Cadi Tazi Lila, Thom Alex J W
École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France.
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
J Chem Theory Comput. 2024 Mar 26;20(6):2491-2504. doi: 10.1021/acs.jctc.3c01378. Epub 2024 Mar 16.
The recent developments of quantum computing present novel potential pathways for quantum chemistry as the scaling of the computational power of quantum computers could be harnessed to naturally encode and solve electronic structure problems. Theoretically exact quantum algorithms for chemistry have been proposed (e.g., quantum phase estimation), but the limited capabilities of current noisy intermediate-scale quantum devices motivated the development of less demanding hybrid algorithms. In this context, the variational quantum eigensolver (VQE) algorithm was successfully introduced as an effective method to compute the ground-state energies of small molecules. This study investigates the folded spectrum (FS) method as an extension of the VQE algorithm for the computation of molecular excited states. It provides the possibility of directly computing excited states around a selected target energy using the same quantum circuit as for the ground-state calculation. Inspired by the variance-based methods from the quantum Monte Carlo literature, the FS method minimizes the energy variance, thus, in principle, requiring a computationally expensive squared Hamiltonian to be applied. We alleviate this potentially poor scaling by employing a Pauli grouping procedure to identify sets of commuting Pauli strings that can be evaluated simultaneously. This allows for a significant reduction in the computational cost. We applied the FS-VQE method to small molecules (H, LiH), obtaining all electronic excited states with chemical accuracy on ideal quantum simulators. Furthermore, we explore the application of quantum error mitigation techniques, demonstrating improved energy accuracy on noisy simulators compared with simulations without mitigation.
量子计算的最新进展为量子化学提供了新的潜在途径,因为量子计算机计算能力的扩展可用于自然地编码和解决电子结构问题。已经提出了理论上精确的化学量子算法(例如量子相位估计),但当前有噪声的中等规模量子设备的有限能力推动了对要求较低的混合算法的开发。在此背景下,变分量子本征求解器(VQE)算法作为一种计算小分子基态能量的有效方法被成功引入。本研究考察了折叠谱(FS)方法,它是VQE算法的扩展,用于计算分子激发态。它提供了使用与基态计算相同的量子电路直接计算选定目标能量附近激发态的可能性。受量子蒙特卡罗文献中基于方差的方法启发,FS方法使能量方差最小化,因此原则上需要应用计算成本高昂的平方哈密顿量。我们通过采用泡利分组程序来识别可同时评估的对易泡利串集,缓解了这种潜在的扩展性不佳问题。这使得计算成本大幅降低。我们将FS-VQE方法应用于小分子(H、LiH),在理想量子模拟器上以化学精度获得了所有电子激发态。此外,我们探索了量子误差缓解技术的应用,结果表明与未缓解的模拟相比,在有噪声的模拟器上能量精度有所提高。