Curioso Walter H, Brunette Maria J
Universidad Continental, Lima, Perú.
School of Health and Rehabilitation Sciences, The Ohio State University, Ohio, Estados Unidos.
Rev Peru Med Exp Salud Publica. 2020 Dec 2;37(3):554-558. doi: 10.17843/rpmesp.2020.373.5585.
Tuberculosis remains an urgent issue on the urban health agenda, especially in low- and middle-income countries. There is a need to develop and implement innovative and effective solutions in the tuberculosis diagnostic process. In this article, We describe the importance of artificial intelligence as a strategy to address tuberculosis control, particularly by providing timely diagnosis. Besides technological factors, the role of socio-technical, cultural and organizational factors is emphasized. The eRx tool involving deep learning algorithms and specifically the use of convolutional neural networks is presented as a case study. eRx is a promising artificial intelligence-based tool for the diagnosis of tuberculosis; which comprises a variety of innovative techniques involving remote X-ray analysis for suspected tuberculosis cases. Innovations based on artificial intelligence tools can optimize the diagnostic process for tuberculosis and other communicable diseases.
结核病仍然是城市卫生议程上的一个紧迫问题,尤其是在低收入和中等收入国家。在结核病诊断过程中,有必要开发和实施创新且有效的解决方案。在本文中,我们阐述了人工智能作为应对结核病控制的一种策略的重要性,特别是在提供及时诊断方面。除了技术因素外,还强调了社会技术、文化和组织因素的作用。作为案例研究,介绍了涉及深度学习算法特别是卷积神经网络使用的eRx工具。eRx是一种很有前景的基于人工智能的结核病诊断工具;它包含多种创新技术,涉及对疑似结核病病例进行远程X线分析。基于人工智能工具的创新可以优化结核病及其他传染病的诊断过程。