J Refract Surg. 2020 Dec 1;36(12):820-825. doi: 10.3928/1081597X-20200930-03.
To evaluate different calculation approaches for toric intraocular lens (IOL) calculation in cases with high posterior corneal astigmatism (PCA).
Consecutive patients who underwent cataract extraction with implantation of toric IOLs by a single surgeon were reviewed. Eyes with measured PCA of 0.80 diopters (D) or greater were included. Errors in the predicted postoperative refractive astigmatism were calculated for the Abulafia-Koch formula, vector summation of anterior keratometry with posterior tomography, and the Barrett toric calculator using predicted and measured PCA.
One hundred seventy-three consecutive cases of toric IOL implantation were reviewed. Seventeen eyes (10%) had PCA of 0.80 D or greater and were investigated. The mean absolute error was the lowest with Barrett's measured PCA (0.55 ± 0.38) followed by Barrett's predicted PCA mean absolute error (0.65 ± 0.31), vector summation (0.69 ± 0.33), and the Abulafia-Koch formula (0.80 ± 0.36). The rate of eyes with prediction errors within 0.25 D or less was the highest for Barrett's measured PCA (29.4%) followed by Barrett's predicted PCA (5.9%) and no eyes for the Abulafia-Koch formula and vector summation. The mean centroid prediction errors were lowest for Barrett's measured PCA and Barrett's predicted PCA (0.14 ± 0.66 @70, 0.14 ± 0.73 @179, respectively), followed by vector summation (0.35 ± 0.70 @5), and the Abulafia-Koch formula (0.39 ± 0.80 @179).
The results suggest that in cases of high PCA, the Barrett toric calculator using direct measurements of PCA may have a potential advantage over predicted PCA in toric IOL calculations and vector summation of the anterior and posterior corneal astigmatism. [J Refract Surg. 2020;36(12):820-825.].
评估在高后角膜散光(PCA)情况下,用于计算散光人工晶状体(IOL)的不同计算方法。
回顾了由同一位外科医生行白内障摘除术并植入散光 IOL 的连续患者。纳入了角膜散光测量值为 0.80 屈光度(D)或更高的患者。使用预测和测量的 PCA 计算了阿布拉菲亚-科赫公式、前角膜曲率计与后角膜地形图向量求和以及巴雷特散光计算器预测术后屈光性散光的误差。
共回顾了 173 例连续行散光 IOL 植入的病例。17 只眼(10%)的 PCA 为 0.80 D 或更高,对此进行了调查。巴雷特测量的 PCA 平均绝对误差最低(0.55 ± 0.38),其次是巴雷特预测的 PCA 平均绝对误差(0.65 ± 0.31)、向量求和(0.69 ± 0.33)和阿布拉菲亚-科赫公式(0.80 ± 0.36)。预测误差在 0.25 D 或更小范围内的眼的比例,以巴雷特测量的 PCA 最高(29.4%),其次是巴雷特预测的 PCA(5.9%),而阿布拉菲亚-科赫公式和向量求和没有眼。以巴雷特测量的 PCA 和巴雷特预测的 PCA 的平均质心预测误差最低(分别为 0.14 ± 0.66 @70、0.14 ± 0.73 @179),其次是向量求和(0.35 ± 0.70 @5)和阿布拉菲亚-科赫公式(0.39 ± 0.80 @179)。
结果表明,在高 PCA 情况下,巴雷特散光计算器使用 PCA 的直接测量值可能比预测的 PCA 在散光 IOL 计算和前角膜散光与后角膜散光的向量求和方面具有优势。