Wallerstein Avi, Fink Jason, Shah Chirag, Gatinel Damien, Debellemanière Guillaume, Cohen Mark, Gauvin Mathieu
Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H3A 0G4, Canada.
LASIK MD, Montreal, QC H3B 4W8, Canada.
J Clin Med. 2024 Sep 22;13(18):5617. doi: 10.3390/jcm13185617.
: This study aims to identify the most accurate regression model for predicting total corneal astigmatism (TCA) from anterior corneal astigmatism (ACA) and to fine-tune the best model's architecture to further optimize predictive accuracy. : A retrospective review of 19,468 eyes screened for refractive surgery was conducted using electronic medical records. Corneal topography data were acquired using the Pentacam HR. Various types (7) and subtypes (21) of regression learners were tested, with a deep neural network (DNN) emerging as the most suitable. The DNN was further refined, experimenting with 23 different architectures. Model performance was evaluated using root mean squared error (RMSE), R, average residual error, and circular error. The final model only used age, ACA magnitude, and ACA axis to predict TCA magnitude and axis. Results were compared to predictions from one of the leading TCA prediction formulas. : Our model achieved higher performance for TCA magnitude prediction (R = 0.9740, RMSE = 0.0963 D, and average residual error = 0.0733 D) compared to the leading formula (R = 0.8590, RMSE = 0.2257 D, and average residual error = 0.1928 D). Axis prediction error also improved by an average of 8.1° (average axis prediction error = 4.74° versus 12.8°). The deep learning approach consistently demonstrated smaller errors and tighter clustering around actual values compared to the traditional formula. : Deep learning techniques significantly outperformed traditional methods for TCA prediction accuracy using the Pentacam HR. This approach may lead to more precise TCA calculations and better IOL selection, potentially enhancing surgical outcomes.
本研究旨在确定从前房角膜散光(ACA)预测总角膜散光(TCA)的最准确回归模型,并对最佳模型的架构进行微调,以进一步优化预测准确性。:利用电子病历对19468只接受屈光手术筛查的眼睛进行回顾性研究。使用Pentacam HR获取角膜地形图数据。测试了7种不同类型和21种亚型的回归学习器,结果显示深度神经网络(DNN)最为合适。对DNN进行了进一步优化,试验了23种不同的架构。使用均方根误差(RMSE)、R、平均残差和圆误差评估模型性能。最终模型仅使用年龄、ACA大小和ACA轴来预测TCA大小和轴。将结果与领先的TCA预测公式之一的预测结果进行比较。:与领先公式(R = 0.8590,RMSE = 0.2257 D,平均残差 = 0.1928 D)相比,我们的模型在TCA大小预测方面表现更优(R = 0.9740,RMSE = 0.0963 D,平均残差 = 0.0733 D)。轴预测误差平均也改善了8.1°(平均轴预测误差 = 4.74°对12.8°)。与传统公式相比,深度学习方法在实际值周围始终显示出更小的误差和更紧密的聚类。:使用Pentacam HR时,深度学习技术在TCA预测准确性方面明显优于传统方法。这种方法可能会导致更精确的TCA计算和更好的人工晶状体选择,有可能提高手术效果。