IEEE Trans Biomed Eng. 2021 Jun;68(6):1957-1968. doi: 10.1109/TBME.2020.3043388. Epub 2021 May 21.
Robotic endoscopes have the potential to dramatically improve endoscopy procedures, however current attempts remain limited due to mobility and sensing challenges and have yet to offer the full capabilities of traditional tools. Endoscopic intervention (e.g., biopsy) for robotic systems remains an understudied problem and must be addressed prior to clinical adoption. This paper presents an autonomous intervention technique onboard a Robotic Endoscope Platform (REP) using endoscopy forceps, an auto-feeding mechanism, and positional feedback.
A workspace model is established for estimating tool position while a Structure from Motion (SfM) approach is used for target-polyp position estimation with the onboard camera and positional sensor. Utilizing this data, a visual system for controlling the REP position and forceps extension is developed and tested within multiple anatomical environments.
The workspace model demonstrates accuracy of 5.5% while the target-polyp estimates are within 5 mm of absolute error. This successful experiment requires only 15 seconds once the polyp has been located, with a success rate of 43% using a 1 cm polyp, 67% for a 2 cm polyp, and 81% for a 3 cm polyp.
Workspace modeling and visual sensing techniques allow for autonomous endoscopic intervention and demonstrate the potential for similar strategies to be used onboard mobile robotic endoscopic devices.
To the authors' knowledge this is the first attempt at automating the task of colonoscopy intervention onboard a mobile robot. While the REP is not sized for actual procedures, these techniques are translatable to devices suitable for in vivo application.
机器人内窥镜有潜力极大地改善内窥镜手术,但由于移动性和感知挑战,目前的尝试仍然有限,尚未提供传统工具的全部功能。机器人系统的内窥镜介入(例如活检)仍然是一个研究不足的问题,在临床采用之前必须解决。本文提出了一种使用内窥镜夹具、自动进给机构和位置反馈的自主干预技术,用于机器人内窥镜平台 (REP)。
建立了一个工作空间模型,用于估计工具位置,同时使用运动结构 (SfM) 方法和机载相机和位置传感器来估计目标-息肉位置。利用这些数据,开发并测试了一种用于控制 REP 位置和夹具延伸的视觉系统,该系统在多个解剖环境中进行了测试。
工作空间模型的准确性为 5.5%,而目标-息肉的估计值的绝对误差在 5 毫米以内。这个成功的实验只需要 15 秒,一旦找到息肉,成功率为 43%,使用 1 厘米的息肉成功率为 67%,使用 2 厘米的息肉成功率为 81%。
工作空间建模和视觉感应技术允许自主进行内窥镜干预,并证明类似策略有可能用于移动机器人内窥镜设备。
据作者所知,这是首次尝试在移动机器人上自动执行结肠镜检查干预任务。虽然 REP 不适用于实际手术,但这些技术可转化为适用于体内应用的设备。