Forensic Science Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada; Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
Faculty of Science, Forensic Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON, L1G 0C5, Canada; Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
Forensic Sci Int. 2021 Jan;318:110627. doi: 10.1016/j.forsciint.2020.110627. Epub 2020 Nov 25.
Physicochemical property changes observed in a degrading bloodstain can be used to estimate its time since deposition (TSD) and provide a timestamp to the sample's age. Many of the time-dependent processes that occur as a bloodstain degrades, such as DNA fragmentation and changes in hemoglobin structure, also exhibit temperature-dependent behaviours. Previous studies have demonstrated that pairing high-resolution automated gel electrophoresis and visible absorbance spectroscopy could be used to quantify the rate of degradation of a bloodstain in relation to time and storage substrate. Our study investigates such trends with an added factor, extreme temperatures. Passive drip stains were stored in either microcentrifuge tubes or on FTA cards at either -20°C, 21°C or 40°C and tested over 11 time points spanning 15 days. For both storage substrates, the wavelength at maximum absorbance for the Soret band and the maximum absorbance of the Alpha band showed a negative trend over time suggesting that spectral shifts are informative for TSD estimates. The ratio of the maximum peak height for DNA fragments lengths of 500-1000 base pairs to 1000-5000 base pairs was the most informative DNA variable in relation to time for both substrates. Cross-validation suggested the appropriate fit of the models with the data and reasonable predictive ability. We integrated both DNA concentration and hemoglobin visible absorbance metrics using principal component analysis (PCA) into a single model. Adding the random effect of the donor to the PCA model accounted for a large portion of the variation as did storage method and temperature. Additionally, canonical correspondence showed that temperature corresponded differently to the response variables for FTA card and microcentrifuge tube samples, suggesting a substrate specific effect. This study confirms that pairing DNA concentration and hemoglobin's visible absorbance can provide insight on the effect of different environmental and storage conditions on bloodstain degradation. While the level of uncertainty surrounding TSD estimates still precludes its use in the field, this study provides a valuable framework that improves our understanding of variation surrounding TSD estimates, which will be critical to any eventual application.
在降解血斑中观察到的物理化学性质变化可用于估计其沉积后的时间(TSD),并为样本的年龄提供时间戳。随着血斑降解,许多与时间相关的过程发生,例如 DNA 片段化和血红蛋白结构变化,也表现出温度依赖性行为。先前的研究表明,结合高分辨率自动凝胶电泳和可见吸收光谱可以用于量化与时间和储存基质相关的血斑降解速率。我们的研究在考虑到温度的情况下,调查了这种趋势。被动滴落的血斑分别储存在微离心管或 FTA 卡中,温度分别为-20°C、21°C 或 40°C,并在 15 天内测试了 11 个时间点。对于两种储存基质,Soret 带的最大吸收波长和 Alpha 带的最大吸收均随时间呈负趋势,表明光谱位移对于 TSD 估计是有信息的。对于两种基质,500-1000 碱基对和 1000-5000 碱基对的 DNA 片段最大峰高比是与时间最相关的最有信息量的 DNA 变量。交叉验证表明,模型与数据的拟合良好,具有合理的预测能力。我们使用主成分分析(PCA)将 DNA 浓度和血红蛋白可见吸收度指标整合到一个单一的模型中。将供体的随机效应添加到 PCA 模型中可以解释大部分变化,储存方法和温度也是如此。此外,典范对应分析表明,温度对 FTA 卡和微离心管样本的响应变量的影响不同,这表明存在基质特异性效应。这项研究证实,结合 DNA 浓度和血红蛋白的可见吸收度可以深入了解不同环境和储存条件对血斑降解的影响。虽然 TSD 估计的不确定性仍然排除了其在现场的使用,但这项研究提供了一个有价值的框架,提高了我们对 TSD 估计周围变化的理解,这对于任何最终的应用都至关重要。