Locovei Claudiu, Filipoiu Nicolae, Kuncser Andrei, Stanciu Anda-Elena, Antohe Ştefan, Florica Camelia-Florina, Costas Andreea, Enculescu Ionuţ, Piraux Luc, Kuncser Victor, Antohe Vlad-Andrei
National Institute of Materials Physics (NIMP), Atomiştilor Street 405A, 077125 Măgurele, Romania.
Faculty of Physics, R&D Center for Materials and Electronic & Optoelectronic Devices (MDEO), University of Bucharest, Atomiştilor Street 405, 077125 Măgurele, Romania.
Nanomaterials (Basel). 2020 Dec 7;10(12):2444. doi: 10.3390/nano10122444.
We report the facile and low-cost preparation as well as detailed characterization of dense arrays of passivated ferromagnetic nickel (Ni) nanotubes (NTs) vertically-supported onto solid Au-coated Si substrates. The proposed fabrication method relies on electrochemical synthesis within the nanopores of a supported anodic aluminum oxide (AAO) template and allows for fine tuning of the NTs ferromagnetic walls just by changing the cathodic reduction potential during the nanostructures' electrochemical growth. Subsequently, the experimental platform allowed further passivation of the Ni NTs with the formation of ultra-thin antiferromagnetic layers of nickel oxide (NiO). Using adequately adapted magnetic measurements, we afterwards demonstrated that the thickness of the NT walls and of the thin antiferromagneticNiO layer, strongly influences the magnetic behavior of the dense array of exchange-coupled Ni/NiO NTs. The specific magnetic properties of these hybrid ferromagnetic/antiferromagnetic nanosystems were then correlated with the morpho-structural and geometrical parameters of the NTs, as well as ultimately strengthened by additionally-implemented micromagnetic simulations. The effect of the unidirectional anisotropy strongly amplified by the cylindrical geometry of the ferromagnetic/antiferromagnetic interfaces has been investigated with the magnetic field applied both parallel and perpendicular to the NTs axis.
我们报道了一种简便且低成本的制备方法,以及对垂直支撑在涂有金的固体硅衬底上的钝化铁磁镍(Ni)纳米管(NTs)密集阵列的详细表征。所提出的制造方法依赖于在支撑的阳极氧化铝(AAO)模板的纳米孔内进行电化学合成,并且仅通过在纳米结构的电化学生长过程中改变阴极还原电位,就可以对NTs的铁磁壁进行微调。随后,该实验平台通过形成超薄的氧化镍(NiO)反铁磁层,对Ni NTs进行了进一步的钝化处理。之后,通过适当调整的磁性测量,我们证明了NTs壁和反铁磁NiO薄层的厚度强烈影响交换耦合Ni/NiO NTs密集阵列的磁行为。然后,这些混合铁磁/反铁磁纳米系统的特定磁性与NTs的形态结构和几何参数相关联,并最终通过额外实施的微磁模拟得到强化。通过将磁场平行和垂直于NTs轴施加,研究了由铁磁/反铁磁界面的圆柱几何形状强烈放大的单向各向异性的影响。