Suppr超能文献

基于元神经网络的实时被动深度学习目标识别。

Meta-neural-network for real-time and passive deep-learning-based object recognition.

机构信息

Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, P. R. China.

School of Physics and Innovation Institute, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, P. R. China.

出版信息

Nat Commun. 2020 Dec 9;11(1):6309. doi: 10.1038/s41467-020-19693-x.

Abstract

Analyzing scattered wave to recognize object is of fundamental significance in wave physics. Recently-emerged deep learning technique achieved great success in interpreting wave field such as in ultrasound non-destructive testing and disease diagnosis, but conventionally need time-consuming computer postprocessing or bulky-sized diffractive elements. Here we theoretically propose and experimentally demonstrate a purely-passive and small-footprint meta-neural-network for real-time recognizing complicated objects by analyzing acoustic scattering. We prove meta-neural-network mimics a standard neural network despite its compactness, thanks to unique capability of its metamaterial unit-cells (dubbed meta-neurons) to produce deep-subwavelength phase shift as training parameters. The resulting device exhibits the "intelligence" to perform desired tasks with potential to overcome the current limitations, showcased by two distinctive examples of handwritten digit recognition and discerning misaligned orbital-angular-momentum vortices. Our mechanism opens the route to new metamaterial-based deep-learning paradigms and enable conceptual devices automatically analyzing signals, with far-reaching implications for acoustics and related fields.

摘要

分析散射波以识别物体在波动物理学中具有重要意义。最近出现的深度学习技术在解释波场方面取得了巨大成功,如在超声无损检测和疾病诊断中,但通常需要耗时的计算机后处理或庞大的衍射元件。在这里,我们从理论上提出并实验证明了一种纯被动的、小尺寸的元神经网络,用于通过分析声波散射实时识别复杂物体。我们证明了元神经网络尽管紧凑,但由于其超材料单元(称为元神经元)具有产生深亚波长相移作为训练参数的独特能力,因此可以模拟标准神经网络。该设备具有执行所需任务的“智能”,有可能克服当前的限制,通过手写数字识别和识别未对准轨道角动量涡旋两个独特的示例展示了这一点。我们的机制为新的基于超材料的深度学习范式开辟了道路,并使概念设备能够自动分析信号,这对声学和相关领域具有深远的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/704b/7725829/122190139d11/41467_2020_19693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验