Suppr超能文献

利用多特征磁共振成像预测乳腺癌对新辅助治疗的反应:I-SPY 2试验结果

Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL.

作者信息

Li Wen, Newitt David C, Gibbs Jessica, Wilmes Lisa J, Jones Ella F, Arasu Vignesh A, Strand Fredrik, Onishi Natsuko, Nguyen Alex Anh-Tu, Kornak John, Joe Bonnie N, Price Elissa R, Ojeda-Fournier Haydee, Eghtedari Mohammad, Zamora Kathryn W, Woodard Stefanie A, Umphrey Heidi, Bernreuter Wanda, Nelson Michael, Church An Ly, Bolan Patrick, Kuritza Theresa, Ward Kathleen, Morley Kevin, Wolverton Dulcy, Fountain Kelly, Lopez-Paniagua Dan, Hardesty Lara, Brandt Kathy, McDonald Elizabeth S, Rosen Mark, Kontos Despina, Abe Hiroyuki, Sheth Deepa, Crane Erin P, Dillis Charlotte, Sheth Pulin, Hovanessian-Larsen Linda, Bang Dae Hee, Porter Bruce, Oh Karen Y, Jafarian Neda, Tudorica Alina, Niell Bethany L, Drukteinis Jennifer, Newell Mary S, Cohen Michael A, Giurescu Marina, Berman Elise, Lehman Constance, Partridge Savannah C, Fitzpatrick Kimberly A, Borders Marisa H, Yang Wei T, Dogan Basak, Goudreau Sally, Chenevert Thomas, Yau Christina, DeMichele Angela, Berry Don, Esserman Laura J, Hylton Nola M

机构信息

University of California, San Francisco, CA, USA.

Karolinska Institute, Stockholm, Sweden.

出版信息

NPJ Breast Cancer. 2020 Nov 27;6(1):63. doi: 10.1038/s41523-020-00203-7.

Abstract

Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.

摘要

动态对比增强(DCE)磁共振成像(MRI)可提供有关乳腺肿瘤对新辅助化疗(NAC)反应的形态学和功能信息。这项回顾性研究的目的是检验结合多种MRI特征的预测模型是否优于具有单一特征的模型。在每次MRI检查中定量计算四个特征:功能性肿瘤体积、最长直径、球形度和对侧背景实质强化。采用逻辑回归分析研究MRI变量与病理完全缓解(pCR)之间的关系。使用受试者工作特征曲线下面积(AUC)评估预测性能。整个队列按激素受体(HR)和人表皮生长因子受体2(HER2)状态(阳性或阴性)进行分层。共纳入384例患者(中位年龄:49岁)。结果显示,联合特征分析的AUC高于任何单一特征分析。在整个队列中,联合特征分析的AUC估计值与单一特征中最高AUC分别为0.81(95%置信区间[CI]:0.76,0.86)和0.79(95%CI:0.73,0.85);在HR阳性/HER2阴性组中分别为0.83(95%CI:0.77,0.92)和0.73(95%CI:0.61,0.84);在HR阳性/HER2阳性组中分别为0.88(95%CI:0.79,0.97)和0.78(95%CI:0.63,0.89);在HR阴性/HER2阳性组中分别为0.83(95%CI不可用)和0.75(95%CI:0.46,0.81);在三阴性组中分别为0.82(95%CI:0.74,0.91)和0.75(95%CI:0.64,0.83)。多特征MRI分析比我们检查的任何单个特征分析都能更好地预测pCR。此外,根据癌症亚型进行分析时,预测的改善更为显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f21/7695723/bc3f3c48da5c/41523_2020_203_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验