Suppr超能文献

一种基于动态对比增强磁共振图像的两阶段双任务学习策略,用于早期预测乳腺癌新辅助化疗的病理完全缓解

A two-stage dual-task learning strategy for early prediction of pathological complete response to neoadjuvant chemotherapy for breast cancer using dynamic contrast-enhanced magnetic resonance images.

作者信息

Jing Bowen, Wang Jing

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX, United States of America.

Advanced Imaging and Informatics for Radiation Therapy (AIRT) Lab, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX, United States of America.

出版信息

Phys Med Biol. 2025 Jul 18;70(14). doi: 10.1088/1361-6560/adee73.

Abstract

Early prediction of treatment response can facilitate personalized treatment for breast cancer patients. Studies on the I-SPY 2 clinical trial demonstrate that multi-time point dynamic contrast-enhanced magnetic resonance (DCEMR) imaging improves the accuracy of predicting pathological complete response (pCR) to chemotherapy. However, previous image-based prediction models usually rely on mid- or post-treatment images to ensure the accuracy of prediction, which may outweigh the benefit of response-based adaptive treatment strategy. Accurately predicting the pCR at the early time point is desired yet remains challenging. To improve prediction accuracy at the early time point of treatment, we proposed a two-stage dual-task learning strategy to train a deep neural network for early prediction using only early-treatment data. We developed and evaluated our proposed method using the I-SPY 2 dataset, which included DCEMR images acquired at three time points: pretreatment (T0), after 3 weeks (T1) and 12 weeks of treatment (T2). At the first stage, we trained a convolutional long short-term memory model using all the data to predict pCR and extract the latent space image representation at T2. At the second stage, we trained a dual-task model to simultaneously predict pCR and the image representation at T2 using images from T0 and T1. This allowed us to predict pCR earlier without using images from T2. By using the conventional single-stage single-task strategy, the area under the receiver operating characteristic curve (AUROC) was 0.799. By using the proposed two-stage dual-task learning strategy, the AUROC was improved to 0.820. Our proposed two-stage dual-task learning strategy can improve model performance significantly (= 0.0025) for predicting pCR at the early time point (3rd week) of neoadjuvant chemotherapy for high-risk breast cancer patients. The early prediction model can potentially help physicians to intervene early and develop personalized plans at the early stage of chemotherapy. Investigation of Serial studies to Predict Your Therapeutic Response with Imaging and Molecular analysis 2 (I-SPY2) trial is registered on ClinicalTrials.gov with the identifier NCT01042379.

摘要

乳腺癌患者治疗反应的早期预测有助于实现个性化治疗。对I-SPY 2临床试验的研究表明,多时间点动态对比增强磁共振(DCEMR)成像提高了预测化疗病理完全缓解(pCR)的准确性。然而,以往基于图像的预测模型通常依赖治疗中期或后期的图像来确保预测准确性,这可能会超过基于反应的适应性治疗策略的益处。在早期时间点准确预测pCR是人们所期望的,但仍然具有挑战性。为了提高治疗早期时间点的预测准确性,我们提出了一种两阶段双任务学习策略,仅使用早期治疗数据训练一个深度神经网络用于早期预测。我们使用I-SPY 2数据集开发并评估了我们提出的方法,该数据集包括在三个时间点采集的DCEMR图像:治疗前(T0)、治疗3周后(T1)和治疗12周后(T2)。在第一阶段,我们使用所有数据训练一个卷积长短期记忆模型来预测pCR并提取T2时的潜在空间图像表示。在第二阶段,我们训练一个双任务模型,使用T0和T1的图像同时预测pCR和T2时的图像表示。这使我们能够在不使用T2图像的情况下更早地预测pCR。使用传统的单阶段单任务策略时,受试者操作特征曲线下面积(AUROC)为0.799。使用所提出的两阶段双任务学习策略时,AUROC提高到了0.820。我们提出的两阶段双任务学习策略可显著提高高危乳腺癌患者新辅助化疗早期时间点(第3周)预测pCR的模型性能(P = 0.0025)。早期预测模型可能有助于医生在化疗早期进行早期干预并制定个性化方案。“通过成像和分子分析预测治疗反应的系列研究2(I-SPY2)试验”在ClinicalTrials.gov上注册,标识符为NCT01042379。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验