Suppr超能文献

带有布里渊激光子系统的光学原子钟的运行。

Operation of an optical atomic clock with a Brillouin laser subsystem.

机构信息

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nature. 2020 Dec;588(7837):244-249. doi: 10.1038/s41586-020-2981-6. Epub 2020 Dec 9.

Abstract

Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic metre, and it is a substantial challenge to enable these clocks to operate in field environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. In terms of the clock laser, prior laboratory demonstrations of optical clocks have relied on the exceptional performance gained through stabilization using bulk cavities, which unfortunately necessitates the use of vacuum and also renders the laser susceptible to vibration-induced noise. Here, using a stimulated Brillouin scattering laser subsystem that has a reduced cavity volume and operates without vacuum, we demonstrate a promising component of a portable optical atomic clock architecture. We interrogate a Sr ion with our stimulated Brillouin scattering laser and achieve a clock exhibiting short-term stability of 3.9 × 10 over one second-an improvement of an order of magnitude over state-of-the-art microwave clocks. This performance increase within a potentially portable system presents a compelling avenue for substantially improving existing technology, such as the global positioning system, and also for enabling the exploration of topics such as geodetic measurements of the Earth, searches for dark matter and investigations into possible long-term variations of fundamental physics constants.

摘要

微波原子钟传统上一直是时间和频率精密测量的“金标准”。然而,在过去的十年中,光学原子钟已经在精度上超过了微波原子钟两个数量级以上。现有的光学原子钟体积超过一立方米,要使这些原子钟在现场环境中运行,就需要对原子参考和时钟激光及其支持的激光和电子设备进行加固和小型化,这是一项重大挑战。就时钟激光而言,先前的光学原子钟实验室演示依赖于使用体腔稳定化获得的优异性能,但不幸的是,这需要使用真空,并且还使激光容易受到振动噪声的影响。在这里,我们使用具有减小的腔体积且无需真空即可运行的受激布里渊散射激光子系统,展示了一种便携式光学原子钟架构的有前途的组成部分。我们用受激布里渊散射激光来探测 Sr 离子,并实现了一个具有在一秒钟内短期稳定性为 3.9×10 的时钟-这比最先进的微波时钟提高了一个数量级。在潜在的便携式系统中实现这种性能提升,为大幅改进现有技术(如全球定位系统)提供了一条极具吸引力的途径,同时也为地球的大地测量测量、暗物质搜索以及对基本物理常数可能的长期变化的研究等课题提供了可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验