McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D
National Institute of Standards and Technology, Boulder, CO, USA.
Department of Physics, University of Colorado, Boulder, CO, USA.
Nature. 2018 Dec;564(7734):87-90. doi: 10.1038/s41586-018-0738-2. Epub 2018 Nov 28.
The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10 level. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10, measurement instability of 3.2 × 10 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7 ± (5) ± (8)] × 10, where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential. Near the surface of Earth, clock comparisons at the 1 × 10 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena, detect gravitational waves, test general relativity and search for dark matter.
时间的流逝是通过计算频率基准的振荡来追踪的,比如地球的公转或钟摆的摆动。通过参考原子跃迁,可以比任何其他物理量更精确地测量频率(进而测量时间),目前一代的光学原子钟报告的分数性能低于10的水平。然而,相对论规定时间的流逝不是绝对的,而是受观察者参考系的影响。因此,时钟测量对相对速度、加速度和引力势表现出敏感性。在这里,我们展示了局部光学时钟测量,其超越了目前解释地球表面时空引力畸变的能力。在两个独立的镱光学晶格时钟中,我们展示了时钟性能三个基本基准的前所未有的值。以时钟频率为单位,我们报告的系统不确定度为1.4×10,测量不稳定性为3.2×10,通过十次盲频比较表征的再现性,产生的频率差为[-7±(5)±(8)]×10,其中“stat”和“sys”分别表示统计和系统不确定度。尽管对引力势差异的敏感性可能会降低时钟作为地面时间标准的性能,但这种相同的敏感性可以用作地球位势的非常灵敏的探测器。在地球表面附近,1×10水平的时钟比较沿重力方向提供一厘米的分辨率,因此这些时钟的性能应该能够实现超越现有技术水平的大地测量。这些光学时钟还可以进一步用于探索地球物理现象、探测引力波、检验广义相对论和寻找暗物质。