Suppr超能文献

球协方差:巴拿赫空间中相依性的一种通用度量。

Ball Covariance: A Generic Measure of Dependence in Banach Space.

作者信息

Pan Wenliang, Wang Xueqin, Zhang Heping, Zhu Hongtu, Zhu Jin

机构信息

Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China (

Department of Statistical Science, School of Mathematics, Southern China Center for Statistical Science, Sun Yat-Sen University, Guangzhou, 510275, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; and Xinhua College, Sun Yat-Sen University, Guangzhou, 510520, China (

出版信息

J Am Stat Assoc. 2020;115(529):307-317. doi: 10.1080/01621459.2018.1543600. Epub 2019 Apr 11.

Abstract

Technological advances in science and engineering have led to the routine collection of large and complex data objects, where the dependence structure among those objects is often of great interest. Those complex objects (e.g, different brain subcortical structures) often reside in some Banach spaces, and hence their relationship cannot be well characterized by most of the existing measures of dependence such as correlation coefficients developed in Hilbert spaces. To overcome the limitations of the existing measures, we propose Ball Covariance as a generic measure of dependence between two random objects in two possibly different Banach spaces. Our Ball Covariance possesses the following attractive properties: (i) It is nonparametric and model-free, which make the proposed measure robust to model mis-specification; (ii) It is nonnegative and equal to zero if and only if two random objects in two separable Banach spaces are independent; (iii) Empirical Ball Covariance is easy to compute and can be used as a test statistic of independence. We present both theoretical and numerical results to reveal the potential power of the Ball Covariance in detecting dependence. Also importantly, we analyze two real datasets to demonstrate the usefulness of Ball Covariance in the complex dependence detection.

摘要

科学与工程领域的技术进步使得大规模复杂数据对象的常规收集成为可能,而这些对象之间的依赖结构往往备受关注。那些复杂对象(例如,不同的脑皮质下结构)通常存在于某些巴拿赫空间中,因此它们之间的关系无法用大多数现有的依赖度量(如在希尔伯特空间中开发的相关系数)很好地描述。为了克服现有度量的局限性,我们提出球协方差作为两个可能不同的巴拿赫空间中两个随机对象之间依赖关系的通用度量。我们的球协方差具有以下吸引人的特性:(i)它是非参数且无模型的,这使得所提出的度量对模型误设具有鲁棒性;(ii)它是非负的,并且当且仅当两个可分巴拿赫空间中的随机对象相互独立时等于零;(iii)经验球协方差易于计算,并且可以用作独立性的检验统计量。我们给出了理论和数值结果,以揭示球协方差在检测依赖关系方面的潜在能力。同样重要的是,我们分析了两个真实数据集,以证明球协方差在复杂依赖关系检测中的有用性。

相似文献

1
Ball Covariance: A Generic Measure of Dependence in Banach Space.球协方差:巴拿赫空间中相依性的一种通用度量。
J Am Stat Assoc. 2020;115(529):307-317. doi: 10.1080/01621459.2018.1543600. Epub 2019 Apr 11.
2
BALL DIVERGENCE: NONPARAMETRIC TWO SAMPLE TEST.球形散度:非参数双样本检验
Ann Stat. 2018 Jun;46(3):1109-1137. doi: 10.1214/17-AOS1579.
3
Estimating Feature-Label Dependence Using Gini Distance Statistics.使用基尼距离统计量估计特征-标签依赖性。
IEEE Trans Pattern Anal Mach Intell. 2021 Jun;43(6):1947-1963. doi: 10.1109/TPAMI.2019.2960358. Epub 2021 May 11.
5
CONDITIONAL DISTANCE CORRELATION.条件距离相关性
J Am Stat Assoc. 2015;110(512):1726-1734. doi: 10.1080/01621459.2014.993081. Epub 2015 Jan 23.
6
Sparse Machine Learning in Banach Spaces.巴拿赫空间中的稀疏机器学习
Appl Numer Math. 2023 May;187:138-157. doi: 10.1016/j.apnum.2023.02.011. Epub 2023 Feb 15.
9
Free Banach lattices under convexity conditions.凸性条件下的自由巴拿赫格
Rev R Acad Cienc Exactas Fis Nat A Mat. 2022;116(1):15. doi: 10.1007/s13398-021-01155-8. Epub 2021 Oct 11.

引用本文的文献

2
Universally Consistent K-Sample Tests via Dependence Measures.通过依赖度量实现的通用一致K样本检验
Stat Probab Lett. 2025 Jan;216. doi: 10.1016/j.spl.2024.110278. Epub 2024 Sep 19.
5
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.统计学习方法在神经影像学数据分析中的应用。
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.
8
A Generic Sure Independence Screening Procedure.一种通用的确定独立筛选程序。
J Am Stat Assoc. 2019;114(526):928-937. doi: 10.1080/01621459.2018.1462709. Epub 2018 Aug 6.

本文引用的文献

1
BALL DIVERGENCE: NONPARAMETRIC TWO SAMPLE TEST.球形散度:非参数双样本检验
Ann Stat. 2018 Jun;46(3):1109-1137. doi: 10.1214/17-AOS1579.
2
Projection correlation between two random vectors.两个随机向量之间的投影相关性。
Biometrika. 2017 Dec;104(4):829-843. doi: 10.1093/biomet/asx043. Epub 2017 Sep 4.
3
Regression Models on Riemannian Symmetric Spaces.黎曼对称空间上的回归模型
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
4
Intestinal Microbiota Is Influenced by Gender and Body Mass Index.肠道微生物群受性别和体重指数的影响。
PLoS One. 2016 May 26;11(5):e0154090. doi: 10.1371/journal.pone.0154090. eCollection 2016.
5
CONDITIONAL DISTANCE CORRELATION.条件距离相关性
J Am Stat Assoc. 2015;110(512):1726-1734. doi: 10.1080/01621459.2014.993081. Epub 2015 Jan 23.
7
Feature Screening via Distance Correlation Learning.通过距离相关学习进行特征筛选
J Am Stat Assoc. 2012 Jul 1;107(499):1129-1139. doi: 10.1080/01621459.2012.695654.
8
Analysis of principal nested spheres.主要嵌套球体分析
Biometrika. 2012 Sep;99(3):551-568. doi: 10.1093/biomet/ass022. Epub 2012 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验