Suppr超能文献

黎曼对称空间上的回归模型

Regression Models on Riemannian Symmetric Spaces.

作者信息

Cornea Emil, Zhu Hongtu, Kim Peter, Ibrahim Joseph G

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.

出版信息

J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.

Abstract

The aim of this paper is to develop a general regression framework for the analysis of manifold-valued response in a Riemannian symmetric space (RSS) and its association with multiple covariates of interest, such as age or gender, in Euclidean space. Such RSS-valued data arises frequently in medical imaging, surface modeling, and computer vision, among many others. We develop an intrinsic regression model solely based on an intrinsic conditional moment assumption, avoiding specifying any parametric distribution in RSS. We propose various link functions to map from the Euclidean space of multiple covariates to the RSS of responses. We develop a two-stage procedure to calculate the parameter estimates and determine their asymptotic distributions. We construct the Wald and geodesic test statistics to test hypotheses of unknown parameters. We systematically investigate the geometric invariant property of these estimates and test statistics. Simulation studies and a real data analysis are used to evaluate the finite sample properties of our methods.

摘要

本文的目的是开发一个通用回归框架,用于分析黎曼对称空间(RSS)中的流形值响应及其与欧几里得空间中多个感兴趣的协变量(如年龄或性别)的关联。这种RSS值数据在医学成像、曲面建模和计算机视觉等众多领域中经常出现。我们仅基于内在条件矩假设开发了一个内在回归模型,避免在RSS中指定任何参数分布。我们提出了各种链接函数,以从多个协变量的欧几里得空间映射到响应的RSS。我们开发了一个两阶段程序来计算参数估计值并确定其渐近分布。我们构建了 Wald 和测地线检验统计量来检验未知参数的假设。我们系统地研究了这些估计值和检验统计量的几何不变性质。通过模拟研究和实际数据分析来评估我们方法的有限样本性质。

相似文献

1
Regression Models on Riemannian Symmetric Spaces.黎曼对称空间上的回归模型
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
2
Intrinsic Regression Models for Manifold-Valued Data.流形值数据的内在回归模型
J Am Stat Assoc. 2009 Jan 1;5762:192-199. doi: 10.1007/978-3-642-04271-3_24.
4
Conditional local distance correlation for manifold-valued data.流形值数据的条件局部距离相关性
Inf Process Med Imaging. 2017 Jun;10265:41-52. doi: 10.1007/978-3-319-59050-9_4. Epub 2017 May 23.
7
Manifold-valued Dirichlet Processes.流形值狄利克雷过程
JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.
9
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.基于高斯 RBF 核的黎曼流形上的核方法。
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
10
Local Polynomial Regression for Symmetric Positive Definite Matrices.对称正定矩阵的局部多项式回归
J R Stat Soc Series B Stat Methodol. 2012 Sep 1;74(4):697-719. doi: 10.1111/j.1467-9868.2011.01022.x. Epub 2012 Mar 16.

引用本文的文献

2
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.统计学习方法在神经影像学数据分析中的应用。
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.
4
Riemannian Regression and Classification Models of Brain Networks Applied to Autism.应用于自闭症的脑网络黎曼回归与分类模型
Connect Neuroimaging (2018). 2018 Sep;11083:78-87. doi: 10.1007/978-3-030-00755-3_9. Epub 2018 Sep 15.
5
Ball Covariance: A Generic Measure of Dependence in Banach Space.球协方差:巴拿赫空间中相依性的一种通用度量。
J Am Stat Assoc. 2020;115(529):307-317. doi: 10.1080/01621459.2018.1543600. Epub 2019 Apr 11.
6
Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions.连接脑区的纤维曲线的非参数贝叶斯模型。
J Am Stat Assoc. 2019;114(528):1505-1517. doi: 10.1080/01621459.2019.1574582. Epub 2019 Apr 30.
7
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging.黎曼非线性混合效应模型:分析神经影像学中的纵向变形
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:5777-5786. doi: 10.1109/CVPR.2017.612. Epub 2017 Nov 9.
8
Conditional local distance correlation for manifold-valued data.流形值数据的条件局部距离相关性
Inf Process Med Imaging. 2017 Jun;10265:41-52. doi: 10.1007/978-3-319-59050-9_4. Epub 2017 May 23.

本文引用的文献

2
Sasaki Metrics for Analysis of Longitudinal Data on Manifolds.用于流形上纵向数据分析的佐佐木度量
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2012 Jun;2012:1027-1034. doi: 10.1109/CVPR.2012.6247780.
4
Local Polynomial Regression for Symmetric Positive Definite Matrices.对称正定矩阵的局部多项式回归
J R Stat Soc Series B Stat Methodol. 2012 Sep 1;74(4):697-719. doi: 10.1111/j.1467-9868.2011.01022.x. Epub 2012 Mar 16.
6
Nonparametric Bayes Classification and Hypothesis Testing on Manifolds.流形上的非参数贝叶斯分类与假设检验
J Multivar Anal. 2012 Oct 1;111:1-19. doi: 10.1016/j.jmva.2012.02.020. Epub 2012 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验