Suppr超能文献

食品的分子注释——迈向个性化饮食与精准健康

Molecular annotation of food - towards personalized diet and precision health.

作者信息

Gan Junai, Siegel Justin B, German J Bruce

机构信息

Department of Food Science and Technology, University of California, Davis, CA, United States.

Department of Chemistry, University of California, Davis, CA, United States.

出版信息

Trends Food Sci Technol. 2019 Sep;91:675-680. doi: 10.1016/j.tifs.2019.07.016. Epub 2019 Jul 24.

Abstract

BACKGROUND

Personalized diet requires matching human genotypic and phenotypic features to foods that increase the chance of achieving a desired physiological health outcome. New insights and technologies will help to decipher the intricacies of diet-health relationships and create opportunities for breakthroughs in dietary interventions for personal health management.

SCOPE AND APPROACH

This article describes the scientific progress towards personalized diet and points out the need for integrating high-quality data on food. A framework for molecular annotation of food is presented, focusing on what aspects should be measured and how these measures relate to health. Strategies of applying trending technologies to improve personalized diet and health are discussed, highlighting challenges and opportunities for transforming data into insights and actions.

KEY FINDINGS AND CONCLUSIONS

The goal of personalized diet is to enable individuals and caregivers to make informed dietary decisions for targeted health management. Achieving this goal requires a better understanding of how molecular properties of food influence individual eating behavior and health outcomes. Annotating food at a molecular level encompasses characterizing its chemical composition and modifications, physicochemical structure, and biological properties. Features of molecular properties in the food annotation framework are applicable to varied conditions and processes from raw materials to meals. Applications of trending technologies, such as omics techniques, wearable biosensors, and artificial intelligence, will support data collection, data analytics, and personalized dietary actions for targeted health management.

摘要

背景

个性化饮食需要将人类的基因型和表型特征与那些能增加实现理想生理健康结果几率的食物相匹配。新的见解和技术将有助于解读饮食与健康关系的复杂性,并为个人健康管理的饮食干预带来突破创造机会。

范围与方法

本文描述了个性化饮食方面的科学进展,并指出整合高质量食物数据的必要性。提出了一个食物分子注释框架,重点关注应测量哪些方面以及这些测量与健康如何相关。讨论了应用前沿技术改善个性化饮食与健康的策略,突出了将数据转化为见解和行动的挑战与机遇。

主要发现与结论

个性化饮食的目标是使个人和护理人员能够为有针对性的健康管理做出明智的饮食决策。实现这一目标需要更好地理解食物的分子特性如何影响个体的饮食行为和健康结果。在分子水平上注释食物包括表征其化学成分与修饰、物理化学结构以及生物学特性。食物注释框架中的分子特性特征适用于从原材料到膳食的各种条件和过程。前沿技术的应用,如组学技术、可穿戴生物传感器和人工智能,将支持数据收集、数据分析以及针对有针对性的健康管理的个性化饮食行动。

相似文献

1
Molecular annotation of food - towards personalized diet and precision health.食品的分子注释——迈向个性化饮食与精准健康
Trends Food Sci Technol. 2019 Sep;91:675-680. doi: 10.1016/j.tifs.2019.07.016. Epub 2019 Jul 24.
2
Wearable and Mobile Sensors for Personalized Nutrition.可穿戴和移动传感器在个性化营养中的应用。
ACS Sens. 2021 May 28;6(5):1745-1760. doi: 10.1021/acssensors.1c00553. Epub 2021 May 19.
3
A Review of Digital Innovations for Diet Monitoring and Precision Nutrition.饮食监测与精准营养的数字创新综述
J Diabetes Sci Technol. 2023 Jan;17(1):217-223. doi: 10.1177/19322968211041356. Epub 2021 Sep 1.
5
Applications of Metabolomics to Precision Nutrition.代谢组学在精准营养中的应用。
Lifestyle Genom. 2022;15(1):1-9. doi: 10.1159/000518489. Epub 2021 Sep 8.
7
Transforming personalized nutrition practice.转变个性化营养实践。
Nutr Rev. 2020 Dec 1;78(12):1046-1051. doi: 10.1093/nutrit/nuaa012.

引用本文的文献

3
Mutexa: A Computational Ecosystem for Intelligent Protein Engineering.Mutexa:智能蛋白质工程的计算生态系统。
J Chem Theory Comput. 2023 Nov 14;19(21):7459-7477. doi: 10.1021/acs.jctc.3c00602. Epub 2023 Oct 12.

本文引用的文献

2
A guide to deep learning in healthcare.深度学习在医疗保健中的应用指南。
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
5
Personal Omics for Precision Health.精准健康的个人组学。
Circ Res. 2018 Apr 27;122(9):1169-1171. doi: 10.1161/CIRCRESAHA.117.310909.
6
Integrative omics for health and disease.整体医学组学与健康和疾病。
Nat Rev Genet. 2018 May;19(5):299-310. doi: 10.1038/nrg.2018.4. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验