Holtum Tim, Kumar Vikas, Sebena Daniel, Voskuhl Jens, Schlücker Sebastian
Physical Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
Organic Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany.
Beilstein J Org Chem. 2020 Nov 27;16:2911-2919. doi: 10.3762/bjoc.16.240. eCollection 2020.
Ultraviolet resonance Raman (UVRR) spectroscopy is a powerful vibrational spectroscopic technique for the label-free monitoring of molecular recognition of peptides or proteins with supramolecular ligands such as guanidiniocarbonyl pyrroles (GCPs). The use of UV laser excitation enables Raman binding studies of this class of supramolecular ligands at submillimolar concentrations in aqueous solution and provides a selective signal enhancement of the carboxylate binding site (CBS). A current limitation for the extension of this promising UVRR approach from peptides to proteins as binding partners for GCPs is the UV-excited autofluorescence from aromatic amino acids observed for laser excitation wavelengths >260 nm. These excitation wavelengths are in the electronic resonance with the GCP for achieving both a signal enhancement and the selectivity for monitoring the CBS, but the resulting UVRR spectrum overlaps with the UV-excited autofluorescence from the aromatic binding partners. This necessitates the use of a laser excitation <260 nm for spectrally separating the UVRR spectrum of the supramolecular ligand from the UV-excited autofluorescence of the peptide or protein. Here, we demonstrate the use of UVRR spectroscopy with 244 nm laser excitation for the characterization of GCP as well as guanidiniocarbonyl indole (GCI), a next generation supramolecular ligand for the recognition of carboxylates. For demonstrating the feasibility of the UVRR binding studies without an interference from the disturbing UV-excited autofluorescence, benzoic acid (BA) was chosen as an aromatic binding partner for GCI. We also present the UVRR results from the binding of GCI to the ubiquitous RGD sequence (arginylglycylaspartic acid) as a biologically relevant peptide. In the case of RGD, the more pronounced differences between the UVRR spectra of the free and complexed GCI (1:1 mixture) clearly indicate a stronger binding of GCI to RGD compared with BA. A tentative assignment of the experimentally observed changes upon molecular recognition is based on the results from density functional theory (DFT) calculations.
紫外共振拉曼(UVRR)光谱是一种强大的振动光谱技术,用于无标记监测肽或蛋白质与超分子配体(如胍基羰基吡咯,GCPs)之间的分子识别。使用紫外激光激发能够在水溶液中以亚毫摩尔浓度对这类超分子配体进行拉曼结合研究,并为羧酸盐结合位点(CBS)提供选择性信号增强。将这种有前景的UVRR方法从肽扩展到作为GCPs结合伙伴的蛋白质的当前限制是,对于大于260 nm的激光激发波长,会观察到来自芳香族氨基酸的紫外激发自发荧光。这些激发波长与GCP处于电子共振状态,以实现信号增强和监测CBS的选择性,但所得的UVRR光谱与来自芳香族结合伙伴的紫外激发自发荧光重叠。这就需要使用小于260 nm的激光激发,以便从肽或蛋白质的紫外激发自发荧光中光谱分离出超分子配体的UVRR光谱。在此,我们展示了使用244 nm激光激发的UVRR光谱来表征GCP以及胍基羰基吲哚(GCI),后者是用于识别羧酸盐的下一代超分子配体。为了证明UVRR结合研究在不受干扰的紫外激发自发荧光影响下的可行性,选择苯甲酸(BA)作为GCI的芳香族结合伙伴。我们还展示了GCI与普遍存在的RGD序列(精氨酰甘氨酰天冬氨酸)作为生物相关肽结合的UVRR结果。在RGD的情况下,游离和复合的GCI(1:1混合物)的UVRR光谱之间更明显的差异清楚地表明,与BA相比,GCI与RGD的结合更强。基于密度泛函理论(DFT)计算结果,对分子识别时实验观察到的变化进行了初步归属。