Kumar Vikas, Holtum Tim, Voskuhl Jens, Giese Michael, Schrader Thomas, Schlücker Sebastian
Department of Chemistry (Physical Chemistry), Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
Department of Chemistry (Physical Chemistry), Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jun 5;254:119622. doi: 10.1016/j.saa.2021.119622. Epub 2021 Feb 26.
Ultraviolet resonance Raman scattering (UVRR) has been frequently used for studying peptide and protein structure and dynamics, while applications in supramolecular chemistry are quite rare. Since UVRR offers the additional advantages of chromophore selectivity and high sensitivity compared with conventional non-resonant Raman scattering, it is ideally suited for label-free probing of relatively small artificial/supramolecular ligands exhibiting electronic resonances in the UV. In this perspective article, we first summarize results of UVRR spectroscopy in supramolecular chemistry in the context of peptide/protein recognition. We focus on selected artificial ligands which were rationally designed as selective carboxylate binders (guanidiniocarbonyl pyrrole, GCP, and guanidiniocarbonyl indole, GCI) and selective lysine binder (molecular tweezer, CLR01), respectively, via a combination of non-covalent interactions involving electrostatics, hydrogen bonding, and hydrophobic effects/van der Waals forces. Current limitations of applying UVRR as a universally applicable method for label-free and site-specific probing of molecular recognition between supramolecular ligands and proteins are highlighted. We then propose solutions to overcome these limitations for transforming UVRR spectroscopy into a generic tool in supramolecular chemistry on proteins, with an emphasis on mono- and multivalent GCP- and GCI-based ligands. Finally, we outline specific cases of supramolecular ligands such as molecular tweezers where alternative approaches such as laser-based mid-IR spectroscopy are required since UVRR can intrinsically not provide the required molecular information.
紫外共振拉曼散射(UVRR)已被频繁用于研究肽和蛋白质的结构与动力学,而在超分子化学中的应用却相当罕见。由于与传统的非共振拉曼散射相比,UVRR具有发色团选择性和高灵敏度等额外优势,它非常适合用于对在紫外区域表现出电子共振的相对较小的人工/超分子配体进行无标记探测。在这篇观点文章中,我们首先在肽/蛋白质识别的背景下总结了UVRR光谱在超分子化学中的研究成果。我们重点关注了分别通过涉及静电、氢键以及疏水作用/范德华力的非共价相互作用组合而合理设计的特定人工配体,即选择性羧酸盐结合剂(胍基羰基吡咯,GCP,和胍基羰基吲哚,GCI)以及选择性赖氨酸结合剂(分子钳,CLR01)。文中强调了将UVRR作为一种普遍适用的方法用于超分子配体与蛋白质之间分子识别的无标记和位点特异性探测时目前存在的局限性。接着,我们提出了解决这些局限性的方案,以便将UVRR光谱转变为蛋白质超分子化学中的通用工具,重点是基于单价和多价GCP和GCI的配体。最后,我们概述了超分子配体的特定案例,如分子钳,在这些案例中,由于UVRR本质上无法提供所需的分子信息,因此需要诸如基于激光的中红外光谱等替代方法。