文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发和验证模型,以预测心力衰竭和射血分数保留患者的猝死和泵衰竭死亡。

Developing and validating models to predict sudden death and pump failure death in patients with heart failure and preserved ejection fraction.

机构信息

Department of Medicine, Hangzhou Normal University, Hangzhou, 310003, China.

British Heart Foundation Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.

出版信息

Clin Res Cardiol. 2021 Aug;110(8):1234-1248. doi: 10.1007/s00392-020-01786-8. Epub 2020 Dec 10.


DOI:10.1007/s00392-020-01786-8
PMID:33301080
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8318942/
Abstract

BACKGROUND: Sudden death (SD) and pump failure death (PFD) are leading modes of death in heart failure and preserved ejection fraction (HFpEF). Risk stratification for mode-specific death may aid in patient enrichment for new device trials in HFpEF. METHODS: Models were derived in 4116 patients in the Irbesartan in Heart Failure with Preserved Ejection Fraction trial (I-Preserve), using competing risks regression analysis. A series of models were built in a stepwise manner, and were validated in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM)-Preserved and Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trials. RESULTS: The clinical model for SD included older age, men, lower LVEF, higher heart rate, history of diabetes or myocardial infarction, and HF hospitalization within previous 6 months, all of which were associated with a higher SD risk. The clinical model predicting PFD included older age, men, lower LVEF or diastolic blood pressure, higher heart rate, and history of diabetes or atrial fibrillation, all for a higher PFD risk, and dyslipidaemia for a lower risk of PFD. In each model, the observed and predicted incidences were similar in each risk subgroup, suggesting good calibration. Model discrimination was good for SD and excellent for PFD with Harrell's C of 0.71 (95% CI 0.68-0.75) and 0.78 (95% CI 0.75-0.82), respectively. Both models were robust in external validation. Adding ECG and biochemical parameters, model performance improved little in the derivation cohort but decreased in validation. Including NT-proBNP substantially increased discrimination of the SD model, and simplified the PFD model with marginal increase in discrimination. CONCLUSIONS: The clinical models can predict risks for SD and PFD separately with good discrimination and calibration in HFpEF and are robust in external validation. Adding NT-proBNP further improved model performance. These models may help to identify high-risk individuals for device intervention in future trials. CLINICAL TRIAL REGISTRATION: I-Preserve: ClinicalTrials.gov NCT00095238; TOPCAT: ClinicalTrials.gov NCT00094302; CHARM-Preserved: ClinicalTrials.gov NCT00634712.

摘要

背景:心力衰竭和射血分数保留(HFpEF)患者的主要死亡模式是猝死(SD)和泵衰竭死亡(PFD)。针对特定死亡模式的风险分层可能有助于 HFpEF 新型装置试验中患者的富集。

方法:在 Irbesartan in Heart Failure with Preserved Ejection Fraction 试验(I-Preserve)中,使用竞争风险回归分析,对 4116 例患者进行了模型推导。逐步建立了一系列模型,并在 Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity(CHARM)-Preserved 和 Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist(TOPCAT)试验中进行了验证。

结果:SD 的临床模型包括年龄较大、男性、较低的 LVEF、较高的心率、既往糖尿病或心肌梗死病史,以及 6 个月内的 HF 住院史,所有这些都与较高的 SD 风险相关。预测 PFD 的临床模型包括年龄较大、男性、较低的 LVEF 或舒张压、较高的心率、既往糖尿病或心房颤动病史,所有这些都与 PFD 风险较高相关,而血脂异常与 PFD 风险较低相关。在每个模型中,观察到的和预测的发生率在每个风险亚组中相似,表明校准良好。模型的区分度对于 SD 较好,对于 PFD 极好,Harrell 的 C 值分别为 0.71(95%CI 0.68-0.75)和 0.78(95%CI 0.75-0.82)。在外部验证中,两个模型都具有稳健性。加入心电图和生化参数后,在推导队列中,模型性能改善不大,但在验证中下降。加入 NT-proBNP 可显著提高 SD 模型的区分度,并简化 PFD 模型,而区分度略有增加。

结论:在 HFpEF 中,这些临床模型可以分别对 SD 和 PFD 进行风险预测,具有良好的区分度和校准性,并且在外部验证中具有稳健性。加入 NT-proBNP 可进一步提高模型性能。这些模型可能有助于在未来的试验中识别出需要装置干预的高危个体。

临床试验注册:I-Preserve:ClinicalTrials.gov NCT00095238;TOPCAT:ClinicalTrials.gov NCT00094302;CHARM-Preserved:ClinicalTrials.gov NCT00634712。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/1771ecaee6eb/392_2020_1786_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/da9167cc53c8/392_2020_1786_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/810b91e1586e/392_2020_1786_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/93ca8c6af61e/392_2020_1786_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/1771ecaee6eb/392_2020_1786_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/da9167cc53c8/392_2020_1786_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/810b91e1586e/392_2020_1786_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/93ca8c6af61e/392_2020_1786_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb29/8318942/1771ecaee6eb/392_2020_1786_Fig4_HTML.jpg

相似文献

[1]
Developing and validating models to predict sudden death and pump failure death in patients with heart failure and preserved ejection fraction.

Clin Res Cardiol. 2021-8

[2]
Age-Related Characteristics and Outcomes of Patients With Heart Failure With Preserved Ejection Fraction.

J Am Coll Cardiol. 2019-8-6

[3]
Myocardial Infarction in Heart Failure With Preserved Ejection Fraction: Pooled Analysis of 3 Clinical Trials.

JACC Heart Fail. 2020-8

[4]
Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE trial.

Circ Heart Fail. 2011-6-29

[5]
Development and external validation of prognostic models to predict sudden and pump-failure death in patients with HFrEF from PARADIGM-HF and ATMOSPHERE.

Clin Res Cardiol. 2021-8

[6]
Prior Pacemaker Implantation and Clinical Outcomes in Patients With Heart Failure and Preserved Ejection Fraction.

JACC Heart Fail. 2019-4-10

[7]
Low Natriuretic Peptide Levels and Outcomes in Patients With Heart Failure and Preserved Ejection Fraction.

JACC Heart Fail. 2024-8

[8]
Interaction Between Spironolactone and Natriuretic Peptides in Patients With Heart Failure and Preserved Ejection Fraction: From the TOPCAT Trial.

JACC Heart Fail. 2017-4

[9]
N-Terminal Pro-B-Type Natriuretic Peptide Levels for Risk Prediction in Patients With Heart Failure and Preserved Ejection Fraction According to Atrial Fibrillation Status.

Circ Heart Fail. 2019-3

[10]
Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy.

Circ Heart Fail. 2011-7-12

引用本文的文献

[1]
Liver biomarkers as predictors of prognosis in heart failure with preserved ejection fraction: a systematic review and meta-analysis.

BMC Cardiovasc Disord. 2025-4-2

[2]
Evaluation of left atrial function and the relationship between left atrial stiffness index and exercise capacity in hypertension-related heart failure with preserved ejection fraction.

Front Cardiovasc Med. 2024-12-17

[3]
Prognostic models for patients suffering a heart failure with a preserved ejection fraction: a systematic review.

ESC Heart Fail. 2024-6

[4]
Risk Prediction Models and Novel Prognostic Factors for Heart Failure with Preserved Ejection Fraction: A Systematic and Comprehensive Review.

Curr Pharm Des. 2023

[5]
Role of N-terminal pro-B type natriuretic peptide as a predictor of poor outcomes in patients with HFrEF receiving primary prevention implantable cardioverter-defibrillator therapy: a systematic review and dose-response meta-analysis.

Open Heart. 2023-3

[6]
Are arrhythmias the drivers of sudden cardiac death in heart failure with preserved ejection fraction? A review.

ESC Heart Fail. 2023-6

[7]
Arrhythmic Sudden Cardiac Death in Heart Failure With Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions.

CJC Open. 2022-8-4

[8]
Diuretic Resistance Prediction and Risk Factor Analysis of Patients with Heart Failure During Hospitalization.

Glob Heart. 2022

[9]
N-Terminal Pro-B-Type Natriuretic Peptide in Risk Stratification of Heart Failure Patients With Implantable Cardioverter-Defibrillator.

Front Cardiovasc Med. 2022-3-1

[10]
Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.

ESC Heart Fail. 2021-12

本文引用的文献

[1]
Relation of Malnutrition to Outcome Following Orthotopic Heart Transplantation.

Am J Cardiol. 2021-3-1

[2]
Sudden cardiac arrest with shockable rhythm in patients with heart failure.

Heart Rhythm. 2020-10

[3]
Mode of Death Among Japanese Adults With Heart Failure With Preserved, Midrange, and Reduced Ejection Fraction.

JAMA Netw Open. 2020-5-1

[4]
Sudden cardiac death risk prediction in heart failure with preserved ejection fraction.

Heart Rhythm. 2020-3

[5]
Sudden death in heart failure with preserved ejection fraction and beyond: an elusive target.

Heart Fail Rev. 2019-11

[6]
Age and Outcomes of Primary Prevention Implantable Cardioverter-Defibrillators in Patients With Nonischemic Systolic Heart Failure.

Circulation. 2017-9-6

[7]
Association Between Midwall Late Gadolinium Enhancement and Sudden Cardiac Death in Patients With Dilated Cardiomyopathy and Mild and Moderate Left Ventricular Systolic Dysfunction.

Circulation. 2017-5-30

[8]
Mode of Death in Heart Failure With Preserved Ejection Fraction.

J Am Coll Cardiol. 2017-2-7

[9]
2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.

Eur Heart J. 2016-7-14

[10]
The Hospitalization Burden and Post-Hospitalization Mortality Risk in Heart Failure With Preserved Ejection Fraction: Results From the I-PRESERVE Trial (Irbesartan in Heart Failure and Preserved Ejection Fraction).

JACC Heart Fail. 2015-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索