Suppr超能文献

利尿剂抵抗预测及心力衰竭住院患者的危险因素分析。

Diuretic Resistance Prediction and Risk Factor Analysis of Patients with Heart Failure During Hospitalization.

机构信息

Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.

Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100081, China.

出版信息

Glob Heart. 2022 May 27;17(1):33. doi: 10.5334/gh.1113. eCollection 2022.

Abstract

OBJECTIVES

This study performed a prediction and risk factor analysis of diuretic resistance (DR) in patients with decompensated heart failure during hospitalization.

METHODS

The data of patients with decompensated heart failure treated in 2010-2018 with DR (n = 3,383) or without DR (n = 15,444) were retrospectively collected from Chinese PLA General Hospital medical records. Statistical analysis of baseline was performed on two groups of people, and the risk factor of DR was analyzed through logic regression. Six machine learning models were built accordingly, and the adjustment of model super parameters was performed by using Bayesian optimization method. Finally, the optimal algorithm was selected according to prediction efficiency.

RESULTS

The preliminary analysis of variance showed significant differences in the incidence of DR among patients with lung infection, hyperlipidemia, type 2 diabetes, and kidney disease. There were significant differences in estimated glomerular filtration rate (eGFR) (P < 0.001). In addition, some physical indicators like BMI were different, the laboratory results like mean red blood cell volume or C-reactive protein assay were also significantly different. The optimal classification model indicated that the best cutoff points for risk factors were vein carbon dioxide, 21 mmol/L and 29 mmol/L; total protein, 64 g/L; pro-brain natriuretic peptide (pro-BNP), 7,600 pg/mL; eGFR, 50 mL/(min ∙ 1.73 m); serum albumin, 33 g/L; hematocrit, 0.32% and 0.56%; red blood cell volume distribution width, 13; and age, 59 years. The optimal area under the curve was 0.9512. The ranked features derived from the model were age, abnormal sodium level, pro-BNP level, serum albumin level, D-dimer level, direct bilirubin level, and eGFR.

CONCLUSIONS

The DR risk prediction model based on a gradient boosting decision tree created here identified its important risk factors. The model made very accurate predictions using simple indicators and simultaneously calculated cutoff values to help doctors predict the occurrence of DR.

摘要

目的

本研究旨在预测失代偿性心力衰竭患者住院期间的利尿剂抵抗(DR)并分析其相关危险因素。

方法

回顾性收集 2010 年至 2018 年在中国人民解放军总医院就诊的 3383 例有 DR 的失代偿性心力衰竭患者和 15444 例无 DR 的患者的病历资料。对两组患者的基线资料进行统计学分析,采用逻辑回归分析 DR 的危险因素。据此建立 6 个机器学习模型,并采用贝叶斯优化方法对模型超参数进行调整,最终根据预测效能选择最优算法。

结果

方差分析初步结果显示,肺部感染、高血脂、2 型糖尿病和肾脏疾病患者的 DR 发生率存在显著差异,估算肾小球滤过率(eGFR)(P < 0.001)也存在显著差异。此外,两组患者的一些身体指标,如 BMI 存在差异,一些实验室结果,如平均红细胞体积或 C 反应蛋白检测也存在显著差异。最优分类模型提示,危险因素的最佳截断值分别为静脉血二氧化碳分压 21 mmol/L 和 29 mmol/L、总蛋白 64 g/L、脑钠肽前体(pro-BNP)7600 pg/mL、eGFR 50 mL/(min·1.73 m)、血清白蛋白 33 g/L、血细胞比容 0.32%和 0.56%、红细胞体积分布宽度 13、年龄 59 岁。最优曲线下面积为 0.9512。模型中得出的重要特征依次为年龄、血钠异常、pro-BNP 水平、血清白蛋白水平、D-二聚体水平、直接胆红素水平和 eGFR。

结论

本研究基于梯度提升决策树创建的 DR 风险预测模型,确定了其重要的危险因素。该模型使用简单的指标进行了非常准确的预测,同时计算了截断值,以帮助医生预测 DR 的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b85/9138715/fee198d86230/gh-17-1-1113-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验