Qiu Pengpeng, Yao Yu, Li Wei, Sun Yang, Jiang Zheng, Mei Bingbao, Gu Lin, Zhang Qinghua, Shang Tongtong, Yu Xiqian, Yang Jianping, Fang Yuan, Zhu Guihua, Zhang Ziling, Zhu Xiaohang, Zhao Tao, Jiang Wan, Fan Yuchi, Wang Lianjun, Ma Bin, Liu Liangliang, Yu Yan, Luo Wei
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China.
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
Nano Lett. 2021 Jan 13;21(1):700-708. doi: 10.1021/acs.nanolett.0c04322. Epub 2020 Dec 10.
The greatest challenge for lithium-sulfur (Li-S) batteries application is the development of cathode hosts to address the low conductivity, huge volume change, and shuttling effect of sulfur or lithium polysulfides (LiPs). Herein, we demonstrate a composite host to circumvent these problems by confining sub-nanometric manganous oxide clusters (MOCs) in nitrogen doped mesoporous carbon nanosheets. The atomic structure of MOCs is well-characterized and optimized via the extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations. Benefiting from the unique design, the assembled Li-S battery displays remarkable electrochemical performances including a high reversible capacity (990 mAh g after 100 cycles at 0.2 A g) and a superior cycle life (60% retention over 250 cycles at 2 A g). Both the experimental results and DFT calculations demonstrate that the well-dispersed MOCs could significantly promote the chemisorption of LiPs, thus greatly improving the capacity and rate performance.
锂硫(Li-S)电池应用面临的最大挑战是开发阴极主体材料,以解决硫或多硫化锂(LiPs)的低导电性、巨大体积变化和穿梭效应。在此,我们展示了一种复合主体材料,通过将亚纳米级氧化锰簇(MOCs)限制在氮掺杂介孔碳纳米片中,来规避这些问题。通过扩展X射线吸收精细结构分析和密度泛函理论(DFT)计算,对MOCs的原子结构进行了充分表征和优化。受益于独特的设计,组装的Li-S电池展现出卓越的电化学性能,包括高可逆容量(在0.2 A g下100次循环后为990 mAh g)和优异的循环寿命(在2 A g下250次循环后保持60%)。实验结果和DFT计算均表明,分散良好的MOCs可显著促进LiPs的化学吸附,从而极大地提高容量和倍率性能。