Wang Changyao, Zhang Wei, Liu Mengmeng, Duan Linlin, Ma Bing, Zhang Xingmiao, Li Wei
Department of Chemistry Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials iChEM and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China.
Small Sci. 2023 Apr 12;3(6):2300019. doi: 10.1002/smsc.202300019. eCollection 2023 Jun.
Metal oxide nanocrystals/mesoporous carbon composite materials are promising in the energy storage field. However, the construction of stoichiometric ternary nanocrystals-functionalized mesoporous carbon materials remains a great challenge. Herein, the synthesis of ultradispersed and ultrasmall LiTiO nanocrystals/ordered mesoporous carbon composites via a chelation-mediated multicomponent coassembly strategy is reported. In this case, the self-assembly into ordered mesostructures and the crystallization of nanoparticle processes can be decoupled by the molecular chelate strategy where citrate ligands can effectively inhibit the hydrolysis and phase separation of metal oxide precursors and confine the crystallization into nanocrystals without aggregation. The obtained 33%-LiTiO-OMC composites present a high specific surface area (≈912 m g), a large pore volume (≈0.62 cm g), a uniform pore size (≈4.1 nm), and ultradispersed LiTiO nanocrystals (3 nm). When loading 60% sulfur, the composites exhibit a high reversible capacity (966 mAh g after 100 cycles at 0.5C), an excellent rate capacity (700 mAh g at 5C), and a long-term cycling performance (63% retention after 1000 cycles at 5C). This method is very simple and reproducible, which paves a new way for the design and synthesis of functional mesoporous materials.
金属氧化物纳米晶体/介孔碳复合材料在储能领域具有广阔前景。然而,化学计量比的三元纳米晶体功能化介孔碳材料的构建仍然是一个巨大挑战。在此,报道了通过螯合介导的多组分共组装策略合成超分散且超小的LiTiO纳米晶体/有序介孔碳复合材料。在这种情况下,通过分子螯合策略可以将自组装成有序介观结构和纳米颗粒过程的结晶解耦,其中柠檬酸盐配体可以有效抑制金属氧化物前驱体的水解和相分离,并将结晶限制在纳米晶体中而不发生聚集。所获得的33%-LiTiO-OMC复合材料具有高比表面积(≈912 m²/g)、大孔体积(≈0.62 cm³/g)、均匀孔径(≈4.1 nm)以及超分散的LiTiO纳米晶体(3 nm)。当负载60%的硫时,该复合材料表现出高可逆容量(在0.5C下100次循环后为966 mAh/g)、优异的倍率性能(在5C下为700 mAh/g)以及长期循环性能(在5C下1000次循环后保留率为63%)。该方法非常简单且可重复,为功能介孔材料的设计和合成开辟了一条新途径。