IEEE/ACM Trans Comput Biol Bioinform. 2022 May-Jun;19(3):1794-1806. doi: 10.1109/TCBB.2020.3043785. Epub 2022 Jun 3.
Deterministic asynchronous Boolean networks play a crucial role in modeling and analysis of gene regulatory networks. In this paper, we focus on a typical type of deterministic asynchronous Boolean networks called deterministic generalized asynchronous random Boolean networks (DGARBNs). We first formulate the extended state transition graph, which captures the whole dynamics of a DGARBN and paves potential ways to analyze this DGARBN. We then propose two SMT-based methods for attractor detection and optimal control of DGARBNs. These methods are implemented in a JAVA tool called DABoolNet. Two experiments are designed to highlight the scalability of the proposed methods. We also formally state and prove several relations between DGARBNs and other models including deterministic asynchronous models, block-sequential Boolean networks, generalized asynchronous random Boolean networks, and mixed-context random Boolean networks. Several case studies are presented to show the applications of our methods.
确定性异步布尔网络在基因调控网络的建模和分析中起着至关重要的作用。在本文中,我们专注于一种典型的确定性异步布尔网络,称为确定性广义异步随机布尔网络(DGARBN)。我们首先形式化扩展状态转移图,该图捕获了 DGARBN 的整个动态,并为分析该 DGARBN 开辟了潜在的途径。然后,我们提出了两种基于 SMT 的方法,用于检测 DGARBN 的吸引子和进行最优控制。这些方法在一个名为 DABoolNet 的 JAVA 工具中实现。设计了两个实验来突出所提出方法的可扩展性。我们还正式陈述和证明了 DGARBN 与其他模型之间的几个关系,包括确定性异步模型、块序贯布尔网络、广义异步随机布尔网络和混合上下文随机布尔网络。提出了几个案例研究来说明我们方法的应用。