Suppr超能文献

整合高分辨率无人机图像和森林清查数据,区分林冠层和林下树木,并量化它们对森林结构和动态的贡献。

Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics.

机构信息

Laboratório de Manejo Florestal, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.

Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Gamboa, Panama, Republic of Panama.

出版信息

PLoS One. 2020 Dec 10;15(12):e0243079. doi: 10.1371/journal.pone.0243079. eCollection 2020.

Abstract

Tree growth and survival differ strongly between canopy trees (those directly exposed to overhead light), and understory trees. However, the structural complexity of many tropical forests makes it difficult to determine canopy positions. The integration of remote sensing and ground-based data enables this determination and measurements of how canopy and understory trees differ in structure and dynamics. Here we analyzed 2 cm resolution RGB imagery collected by a Remotely Piloted Aircraft System (RPAS), also known as drone, together with two decades of bi-annual tree censuses for 2 ha of old growth forest in the Central Amazon. We delineated all crowns visible in the imagery and linked each crown to a tagged stem through field work. Canopy trees constituted 40% of the 1244 inventoried trees with diameter at breast height (DBH) > 10 cm, and accounted for ~70% of aboveground carbon stocks and wood productivity. The probability of being in the canopy increased logistically with tree diameter, passing through 50% at 23.5 cm DBH. Diameter growth was on average twice as large in canopy trees as in understory trees. Growth rates were unrelated to diameter in canopy trees and positively related to diameter in understory trees, consistent with the idea that light availability increases with diameter in the understory but not the canopy. The whole stand size distribution was best fit by a Weibull distribution, whereas the separate size distributions of understory trees or canopy trees > 25 cm DBH were equally well fit by exponential and Weibull distributions, consistent with mechanistic forest models. The identification and field mapping of crowns seen in a high resolution orthomosaic revealed new patterns in the structure and dynamics of trees of canopy vs. understory at this site, demonstrating the value of traditional tree censuses with drone remote sensing.

摘要

树木的生长和存活在林冠层树木(直接暴露在头顶上方光线中的树木)和林下树木之间存在显著差异。然而,许多热带森林的结构复杂性使得确定林冠层位置变得困难。遥感和地面数据的整合可以实现这一目标,并可以测量林冠层和林下树木在结构和动态方面的差异。在这里,我们分析了由遥控飞机系统(RPAS),也称为无人机,收集的 2 厘米分辨率 RGB 图像,以及在亚马逊中部 2 公顷的古老森林中进行的为期 20 年的每两年一次的树木普查数据。我们勾勒出了图像中可见的所有树冠,并通过实地工作将每个树冠与标记的树干联系起来。林冠层树木构成了 1244 棵胸径(DBH)> 10 厘米的树木的 40%,占地上碳储量和木材生产力的~70%。树冠树木的存在概率呈对数增加,在 DBH 为 23.5 厘米时达到 50%。树冠树木的直径生长平均是林下树木的两倍。在树冠树木中,生长速率与直径无关,而在下林树木中与直径呈正相关,这与光可用性随直径在林下增加而不在林冠层增加的观点一致。整个林分大小分布最好由威布尔分布拟合,而林下树木或 DBH> 25 厘米的树冠树木的单独大小分布同样由指数和威布尔分布拟合,这与机械森林模型一致。高分辨率正射镶嵌图中看到的树冠的识别和实地绘图揭示了该地点树冠与林下树木的结构和动态的新模式,证明了传统树木普查与无人机遥感相结合的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd83/7728260/a879eb236164/pone.0243079.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验