School of Chemical and Process Engineering, University of Leeds, LS2 9JT Leeds, UK.
School of Chemical and Process Engineering, University of Leeds, LS2 9JT Leeds, UK; Institute of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, UK.
Bioresour Technol. 2021 Feb;321:124494. doi: 10.1016/j.biortech.2020.124494. Epub 2020 Dec 3.
The augmentation of biochar produced at 450 and 600-650 °C and hydrochar produced at 250 °C has been investigated using biochemical methane potential experiments of cellulose. The feedstocks used for the char production included the lignocellulosic (oak wood), macroalgae (Fucus serratus) and aquatic plant (water hyacinth). Biomethane production was improved with the addition of lower-temperature biochars from oak wood (285 mL CH/g VS) and water hyacinth (294 mL CH/g VS), corresponding to 7 and 11% more than the control. The addition of these two biochars increased the methane production rate of 2.4 and 2.3 times the control, respectively. Higher temperature biochars showed no difference. Conversely, all hydrochars and macroalgae biochars augmentation reduced methane generation by 57-86 %. The chemical and structural composition of each of the chars differed significantly. Surface oxygen functionality appears to be the most important property of the biochars that improved digestion performance.
使用纤维素的生物化学甲烷潜能实验,研究了在 450 和 600-650°C 下产生的生物炭和在 250°C 下产生的水热炭的增强作用。用于制炭的原料包括木质纤维素(橡木)、大型藻类(皱叶酸模)和水生植物(水葫芦)。添加来自橡木(285 毫升 CH/gVS)和水葫芦(294 毫升 CH/gVS)的低温生物炭可提高生物甲烷的产量,分别比对照提高了 7%和 11%。这两种生物炭的添加分别使甲烷的生成速率提高了对照的 2.4 和 2.3 倍。高温生物炭没有差异。相反,所有水热炭和大型藻类生物炭的添加都使甲烷生成减少了 57-86%。每个炭的化学和结构组成有显著差异。表面氧功能似乎是提高消化性能的生物炭最重要的特性。