Suppr超能文献

一种用于家庭睡眠呼吸暂停测试、筛查和分类的新型可穿戴系统。

A New Wearable System for Home Sleep Apnea Testing, Screening, and Classification.

机构信息

Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy.

STMicroelectronics, Agrate Brianza, 20864 MB, Italy.

出版信息

Sensors (Basel). 2020 Dec 8;20(24):7014. doi: 10.3390/s20247014.

Abstract

We propose an unobtrusive, wearable, and wireless system for the pre-screening and follow-up in the domestic environment of specific sleep-related breathing disorders. This group of diseases manifests with episodes of apnea and hypopnea of central or obstructive origin, and it can be disabling, with several drawbacks that interfere in the daily patient life. The gold standard for their diagnosis and grading is polysomnography, which is a time-consuming, scarcely available test with many wired electrodes disseminated on the body, requiring hospitalization and long waiting times. It is limited by the night-by-night variability of sleep disorders, while inevitably causing sleep alteration and fragmentation itself. For these reasons, only a small percentage of patients achieve a definitive diagnosis and are followed-up. Our device integrates photoplethysmography, an accelerometer, a microcontroller, and a bluetooth transmission unit. It acquires data during the whole night and transmits to a PC for off-line processing. It is positioned on the nasal septum and detects apnea episodes using the modulation of the photoplethysmography signal during the breath. In those time intervals where the photoplethysmography is detecting an apnea, the accelerometer discriminates obstructive from central type thanks to its excellent sensitivity to thoraco-abdominal movements. Tests were performed on a hospitalized patient wearing our integrated system and the type III home sleep apnea testing recommended by The American Academy of Sleep Medicine. Results are encouraging: sensitivity and precision around 90% were achieved in detecting more than 500 apnea episodes. Least thoraco-abdominal movements and body position were successfully classified in lying down control subjects, paving the way toward apnea type classification.

摘要

我们提出了一种非侵入性、可穿戴和无线系统,用于在家庭环境中对特定与睡眠相关的呼吸障碍进行初步筛查和随诊。这些疾病表现为中枢性或阻塞性呼吸暂停和低通气发作,可能导致残疾,存在许多干扰患者日常生活的缺点。其诊断和分级的金标准是多导睡眠图,这是一项耗时的、可用性差的测试,需要在身体上散布许多有线电极,需要住院和长时间等待。它受到睡眠障碍的夜间变异性的限制,同时不可避免地导致自身的睡眠改变和碎片化。出于这些原因,只有一小部分患者能够得到明确的诊断和随诊。我们的设备集成了光体积描记术、加速度计、微控制器和蓝牙传输单元。它可以在整个晚上获取数据,并传输到 PC 进行离线处理。它被放置在鼻中隔上,并通过呼吸过程中光体积描记信号的调制来检测呼吸暂停事件。在光体积描记术检测到呼吸暂停的时间段内,加速度计通过其对胸腹部运动的出色敏感性来区分阻塞性和中枢性类型。在佩戴我们集成系统的住院患者和美国睡眠医学学会推荐的 III 型家庭睡眠呼吸暂停测试上进行了测试。结果令人鼓舞:在检测 500 多次呼吸暂停事件中,达到了 90%左右的灵敏度和精度。在仰卧位的对照受试者中,成功地对最少的胸腹部运动和体位进行了分类,为呼吸暂停类型的分类铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd8/7762585/7ec939e48379/sensors-20-07014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验