Suppr超能文献

房颤风险分层评分的比较分析。

Comparative Analysis of Risk Stratification Scores in Atrial Fibrillation.

机构信息

First Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Greece.

出版信息

Curr Pharm Des. 2021;27(10):1298-1310. doi: 10.2174/1381612826666201210113328.

Abstract

BACKGROUND

Atrial Fibrillation (AF) has become a major global health concern and is associated with an increased risk of poor outcomes. Identifying risk factors in patients with AF can be challenging, given the high burden of comorbidities in these patients. Risk stratification schemes appear to facilitate accurate prediction of outcomes and assist therapeutic management decisions.

OBJECTIVE

To summarize current evidence on risk stratification scores for patients with AF.

RESULTS

Traditional risk models rely heavily on demographics and comorbidities, while newer tools have been gradually focusing on novel biomarkers and diagnostic imaging to facilitate more personalized risk assessment. Several studies have been conducted to compare existing risk schemes and identify specific patient populations in which the prognostic ability of each scheme excels. However, current guidelines do not appear to encourage the implementation of risk models in clinical practice, as they have not incorporated new ones in their recommendations for the management of patients with AF for almost a decade.

CONCLUSION

Further work is warranted to analyze new reliable risk stratification schemes and optimally implement them into routine clinical life.

摘要

背景

心房颤动(AF)已成为一个主要的全球健康关注点,与不良结局风险增加相关。鉴于这些患者存在较高的合并症负担,识别 AF 患者的风险因素具有挑战性。风险分层方案似乎有助于准确预测结局并辅助治疗管理决策。

目的

总结目前关于 AF 患者风险分层评分的证据。

结果

传统风险模型主要依赖于人口统计学特征和合并症,而较新的工具则逐渐侧重于新型生物标志物和诊断性影像学,以促进更个性化的风险评估。已经进行了多项研究来比较现有的风险方案,并确定每个方案在哪些特定患者人群中具有卓越的预后能力。然而,目前的指南似乎并不鼓励在临床实践中实施风险模型,因为近十年来,它们在 AF 患者管理的建议中并未纳入新的模型。

结论

需要进一步的工作来分析新的可靠风险分层方案,并将其最佳地纳入常规临床实践中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验