Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
Complex Systems Research Group, The University of Sydney, Sydney, NSW, Australia.
Nat Commun. 2020 Dec 10;11(1):6337. doi: 10.1038/s41467-020-19716-7.
The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.
大脑如何平衡灵活性和整合性的生物学机制仍知之甚少。一个潜在的解决方案可能在于神经生物学的一个独特方面,即许多大脑系统都包含弥散的突触连接。在这里,我们证明了在一个经过验证的生物物理皮质丘脑模型中增加弥散性皮质耦合可以使系统通过准临界状态,在这种状态下,输入噪声的空间异质性支持分布式子区域中的瞬态临界动力学。准临界状态的存在与复杂适应的大脑网络动力学的已知特征相一致。最后,我们证明了在经验性的全脑人类神经影像学数据中也存在类似的动态特征。总之,我们的研究结果表明,在丘脑皮质模型中调节局部和弥散性突触耦合的平衡可以产生准临界脑状态,从而使大脑在独特的信息处理模式之间灵活转换。