Fousek Jan, Rabuffo Giovanni, Gudibanda Kashyap, Sheheitli Hiba, Petkoski Spase, Jirsa Viktor
INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
Sci Rep. 2024 Dec 30;14(1):31970. doi: 10.1038/s41598-024-83542-w.
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
静息时出现的自发波动脑活动模式已与大脑健康和认知相关联。尽管对时空脑模式有详细描述,但我们对其生成机制的理解仍不完整。通过结合计算建模和动力系统分析,我们通过网络连通性对静息态流形的形成提供了一种机制性描述。我们证明,连通性导致的对称性破缺在流形上产生了一种特征流,该特征流产生了跨尺度和成像模态的主要数据特征。这些特征包括自发的高振幅共激活、神经元级联反应、皮层频谱梯度、多稳定性以及特征性功能连通性动态变化。当跨皮层层次结构汇总时,这些与经验数据的特征相匹配。对大脑静息态流形的理解对于构建脑功能理论中使用的特定任务流和流形至关重要。此外,它将关注点从单个记录转移到大脑产生健康和病理特征性特定动态变化的能力上。