McKinley Joseph, Zhang Mengsen, Wead Alice, Williams Christine, Tognoli Emmanuelle, Beetle Christopher
Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA.
Department of Psychiatry, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27514 USA.
J Phys Conf Ser. 2021;2090. doi: 10.1088/1742-6596/2090/1/012167. Epub 2021 Dec 2.
The Haken-Kelso-Bunz (HKB) system of equations is a well-developed model for dyadic rhythmic coordination in biological systems. It captures ubiquitous empirical observations of bistability - the coexistence of in-phase and antiphase motion - in neural, behavioral, and social coordination. Recent work by Zhang and colleagues has generalized HKB to many oscillators to account for new empirical phenomena observed in multiagent interaction. Utilising this generalization, the present work examines how the coordination dynamics of a pair of oscillators can be augmented by virtue of their coupling to a third oscillator. We show that stable antiphase coordination emerges in pairs of oscillators even when their coupling parameters would have prohibited such coordination in their dyadic relation. We envision two lines of application for this theoretical work. In the social sciences, our model points toward the development of intervention strategies to support coordination behavior in heterogeneous groups (for instance in gerontology, when younger and older individuals interact). In neuroscience, our model will advance our understanding of how the direct functional connection of mesoscale or microscale neural ensembles might be switched by their changing coupling to other neural ensembles. Our findings illuminate a crucial property of complex systems: how the whole is different than the system's parts.
哈肯-凯尔索-布恩兹(HKB)方程组是生物系统中二元节律协调的一个成熟模型。它捕捉到了在神经、行为和社会协调中普遍存在的双稳态经验观察结果——同相和反相运动的共存。张及其同事最近的工作将HKB推广到多个振荡器,以解释在多智能体交互中观察到的新经验现象。利用这一推广,本研究考察了一对振荡器的协调动力学如何因其与第三个振荡器的耦合而增强。我们表明,即使一对振荡器的耦合参数在其二元关系中会禁止这种协调,稳定的反相协调仍会出现。我们设想了这一理论工作的两条应用路线。在社会科学中,我们的模型指向干预策略的发展,以支持异质群体中的协调行为(例如在老年学中,当年轻人和老年人互动时)。在神经科学中,我们的模型将推进我们对中尺度或微尺度神经群体的直接功能连接如何通过其与其他神经群体不断变化的耦合而切换的理解。我们的发现揭示了复杂系统的一个关键特性:整体如何不同于系统的各个部分。