Suppr超能文献

真菌专家:真菌王国的比较基因组和转录组资源。

Fungi.guru: Comparative genomic and transcriptomic resource for the fungi kingdom.

作者信息

Lim Jolyn Jia Jia, Koh Jace, Moo Jia Rong, Villanueva Erielle Marie Fajardo, Putri Dhira Anindya, Lim Yuen Shan, Seetoh Wei Song, Mulupuri Sriya, Ng Janice Wan Zhen, Nguyen Nhi Le Uyen, Reji Rinta, Foo Herman, Zhao Margaret Xuan, Chan Tong Ling, Rodrigues Edbert Edric, Kairon Ryanjit Singh, Hee Ker Min, Chee Natasha Cassandra, Low Ann Don, Chen Zoe Hui Xin, Lim Shan Chun, Lunardi Vanessa, Fong Tuck Choy, Chua Cherlyn Xin'Er, Koh Kenny Ting Sween, Julca Irene, Delli-Ponti Riccardo, Ng Jonathan Wei Xiong, Mutwil Marek

机构信息

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.

College of Medicine and Veterinary Medicine, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, United Kingdom.

出版信息

Comput Struct Biotechnol J. 2020 Nov 20;18:3788-3795. doi: 10.1016/j.csbj.2020.11.019. eCollection 2020.

Abstract

The fungi kingdom is composed of eukaryotic heterotrophs, which are responsible for balancing the ecosystem and play a major role as decomposers. They also produce a vast diversity of secondary metabolites, which have antibiotic or pharmacological properties. However, our lack of knowledge of gene function in fungi precludes us from tailoring them to our needs and tapping into their metabolic diversity. To help remedy this, we gathered genomic and gene expression data of 19 most widely-researched fungi to build an online tool, fungi.guru, which contains tools for cross-species identification of conserved pathways, functional gene modules, and gene families. We exemplify how our tool can elucidate the molecular function, biological process and cellular component of genes involved in various biological processes, by identifying a secondary metabolite pathway producing gliotoxin in , the catabolic pathway of cellulose in and the conserved DNA replication pathway in and . The tool is available at www.fungi.guru.

摘要

真菌界由真核异养生物组成,它们负责平衡生态系统,并作为分解者发挥主要作用。它们还产生种类繁多的次生代谢产物,这些次生代谢产物具有抗生素或药理特性。然而,我们对真菌基因功能的了解不足,这使我们无法根据自身需求对它们进行改造,也无法利用它们的代谢多样性。为了帮助解决这一问题,我们收集了19种研究最广泛的真菌的基因组和基因表达数据,构建了一个在线工具fungi.guru,它包含用于跨物种鉴定保守途径、功能基因模块和基因家族的工具。我们通过鉴定烟曲霉中产生胶霉毒素的次生代谢途径、里氏木霉中纤维素的分解代谢途径以及酿酒酵母和白色念珠菌中保守的DNA复制途径,举例说明了我们的工具如何阐明参与各种生物过程的基因的分子功能、生物学过程和细胞成分。该工具可在www.fungi.guru上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/7718472/a0d88fcb8676/ga1.jpg

相似文献

1
Fungi.guru: Comparative genomic and transcriptomic resource for the fungi kingdom.
Comput Struct Biotechnol J. 2020 Nov 20;18:3788-3795. doi: 10.1016/j.csbj.2020.11.019. eCollection 2020.
2
Protist.guru: A Comparative Transcriptomics Database for Protists.
J Mol Biol. 2022 Jun 15;434(11):167502. doi: 10.1016/j.jmb.2022.167502. Epub 2022 Feb 18.
5
Gliotoxin effects on fungal growth: mechanisms and exploitation.
Fungal Genet Biol. 2012 Apr;49(4):302-12. doi: 10.1016/j.fgb.2012.02.003. Epub 2012 Mar 1.
6
Purine metabolism in plant pathogenic fungi.
Front Microbiol. 2024 Feb 7;15:1352354. doi: 10.3389/fmicb.2024.1352354. eCollection 2024.
7
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection.
mBio. 2023 Feb 28;14(1):e0244222. doi: 10.1128/mbio.02442-22. Epub 2023 Jan 4.
8
Bacteria.guru: Comparative Transcriptomics and Co-Expression Database for Bacterial Pathogens.
J Mol Biol. 2022 Jun 15;434(11):167380. doi: 10.1016/j.jmb.2021.167380. Epub 2021 Nov 25.
9
Interspecies Genomic Variation and Transcriptional Activeness of Secondary Metabolism-Related Genes in Section .
Front Fungal Biol. 2021 Apr 16;2:656751. doi: 10.3389/ffunb.2021.656751. eCollection 2021.
10

本文引用的文献

1
Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation.
Eng Life Sci. 2018 Jun 27;18(11):768-778. doi: 10.1002/elsc.201800039. eCollection 2018 Nov.
2
LSTrAP-Cloud: A User-Friendly Cloud Computing Pipeline to Infer Coexpression Networks.
Genes (Basel). 2020 Apr 16;11(4):428. doi: 10.3390/genes11040428.
3
Computational approaches to unravel the pathways and evolution of specialized metabolism.
Curr Opin Plant Biol. 2020 Jun;55:38-46. doi: 10.1016/j.pbi.2020.01.007. Epub 2020 Mar 19.
4
Expression Atlas of Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots.
Plant Cell. 2020 Apr;32(4):853-870. doi: 10.1105/tpc.19.00780. Epub 2020 Jan 27.
7
Functional exploration of co-expression networks identifies a nexus for modulating protein and citric acid titres in submerged culture.
Fungal Biol Biotechnol. 2019 Nov 9;6:18. doi: 10.1186/s40694-019-0081-x. eCollection 2019.
8
Gene regulatory network inference resources: A practical overview.
Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194430. doi: 10.1016/j.bbagrm.2019.194430. Epub 2019 Oct 31.
9
Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer.
Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194429. doi: 10.1016/j.bbagrm.2019.194429. Epub 2019 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验