Suppr超能文献

一种新型主动脉瓣支架的有限元分析

Finite Element Analysis of a Novel Aortic Valve Stent.

作者信息

Castravete Ştefan, Mazilu Dumitru, Gruionu Lucian Gheorghe, Militaru Cristian, Militaru Sebastian, UdriŞtoiu Anca-Loredana, Iacob Andreea Valentina, Gruionu Gabriel

机构信息

Caelynx Europe Ltd., Craiova, Romania.

National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Curr Health Sci J. 2020 Jul-Sep;46(3):290-296. doi: 10.12865/CHSJ.46.03.11. Epub 2020 Sep 30.

Abstract

Worldwide, one of the leading causes of death for patients with cardiovascular disease is aortic valve failure or insufficiency as a result of calcification and cardiovascular disease. The surgical treatment consists of repair or total replacement of the aortic valve. Artificial aortic valve implantation via a percutaneous or endovascular procedure is the minimally invasive alternative to open chest surgery, and the only option for high-risk or older patients. Due to the complex anatomical location between the left ventricle and the aorta, there are still engineering design optimization challenges which influence the long-term durability of the valve. In this study we developed a computer model and performed a numerical analysis of an original self-expanding stent for transcatheter aortic valve in order to optimize its design and materials. The study demonstrates the current valve design could be a good alternative to the existing commercially available valve devices.

摘要

在全球范围内,心血管疾病患者的主要死因之一是由于钙化和心血管疾病导致的主动脉瓣功能衰竭或关闭不全。手术治疗包括主动脉瓣修复或完全置换。通过经皮或血管内手术植入人工主动脉瓣是开胸手术的微创替代方案,也是高危或老年患者的唯一选择。由于左心室和主动脉之间复杂的解剖位置,仍存在工程设计优化挑战,这会影响瓣膜的长期耐用性。在本研究中,我们开发了一个计算机模型,并对一种用于经导管主动脉瓣的新型自膨胀支架进行了数值分析,以优化其设计和材料。该研究表明,当前的瓣膜设计可能是现有商用瓣膜装置的一个很好的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3770/7716760/2cde8322eb8d/CHSJ-46-03-290-fig1.jpg

相似文献

1
Finite Element Analysis of a Novel Aortic Valve Stent.
Curr Health Sci J. 2020 Jul-Sep;46(3):290-296. doi: 10.12865/CHSJ.46.03.11. Epub 2020 Sep 30.
2
Self-Expanding Stent and Delivery System for Aortic Valve Replacement.
J Med Device. 2012 Dec;6(4):410061-410069. doi: 10.1115/1.4007750. Epub 2012 Nov 1.
3
4
Finite element analysis of NiTi self-expandable heart valve stent.
Proc Inst Mech Eng H. 2019 Oct;233(10):1042-1050. doi: 10.1177/0954411919865404. Epub 2019 Jul 28.
5
Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
J Thorac Cardiovasc Surg. 2017 May;153(5):1065-1073. doi: 10.1016/j.jtcvs.2016.12.016. Epub 2016 Dec 23.
6
Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
Cardiovasc Revasc Med. 2009 Oct-Dec;10(4):247-51. doi: 10.1016/j.carrev.2008.12.003.
7
Transarterial aortic valve replacement with a self expanding stent in pigs.
Heart. 2004 Nov;90(11):1326-31. doi: 10.1136/hrt.2003.028951.
8
[Change of paradigms in the surgical treatment of complex thoracic aortic disease].
Herz. 2006 Aug;31(5):434-42. doi: 10.1007/s00059-006-2839-1.
10
Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
J Mech Behav Biomed Mater. 2011 Jan;4(1):85-98. doi: 10.1016/j.jmbbm.2010.09.009. Epub 2010 Sep 29.

引用本文的文献

1
Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization.
Front Bioeng Biotechnol. 2023 Sep 15;11:1238130. doi: 10.3389/fbioe.2023.1238130. eCollection 2023.

本文引用的文献

1
Biomechanical effects of the working modes of LVADs on the aortic valve: A primary numerical study.
Comput Methods Programs Biomed. 2020 Sep;193:105512. doi: 10.1016/j.cmpb.2020.105512. Epub 2020 Apr 21.
2
Hemodynamic effects of support modes of LVADs on the aortic valve.
Med Biol Eng Comput. 2019 Dec;57(12):2657-2671. doi: 10.1007/s11517-019-02058-y. Epub 2019 Nov 10.
3
Finite element analysis of NiTi self-expandable heart valve stent.
Proc Inst Mech Eng H. 2019 Oct;233(10):1042-1050. doi: 10.1177/0954411919865404. Epub 2019 Jul 28.
4
Novel stent design for transcatheter mitral valve implantation.
Interact Cardiovasc Thorac Surg. 2018 Feb 1;26(2):190-195. doi: 10.1093/icvts/ivx289.
5
Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
J Thorac Cardiovasc Surg. 2017 May;153(5):1065-1073. doi: 10.1016/j.jtcvs.2016.12.016. Epub 2016 Dec 23.
6
Biomechanical properties of native and tissue engineered heart valve constructs.
J Biomech. 2014 Jun 27;47(9):1949-63. doi: 10.1016/j.jbiomech.2013.09.023. Epub 2013 Oct 21.
7
Self-expanding aortic valve stent-material optimization.
Comput Biol Med. 2012 Nov;42(11):1060-3. doi: 10.1016/j.compbiomed.2012.08.007. Epub 2012 Sep 14.
8
Stent biomaterial and design selection using finite element analysis for percutaneous aortic valve replacement.
Artif Organs. 2011 Feb;35(2):166-75. doi: 10.1111/j.1525-1594.2010.01061.x. Epub 2010 Nov 26.
10
Midterm results of transapical aortic valve replacement via real-time magnetic resonance imaging guidance.
J Thorac Cardiovasc Surg. 2010 Feb;139(2):424-30. doi: 10.1016/j.jtcvs.2009.08.005. Epub 2009 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验