Suppr超能文献

人防御素对……和……的抗菌活性

Antibacterial activity of human defensins against and .

作者信息

Bolatchiev Albert

机构信息

Department of Clinical Pharmacology, Stavropol State Medical University, Stavropol, Russian Federation.

出版信息

PeerJ. 2020 Nov 25;8:e10455. doi: 10.7717/peerj.10455. eCollection 2020.

Abstract

BACKGROUND

The global problem of antibiotic resistance requires the search for and development of new methods of treatment. One of the promising strategies is the use of low doses of antimicrobial peptides, in particular, human defensins HNP-1, hBD-1, and hBD-3, in combination with antibacterial drugs already used in clinical practice. This approach may be used to increase the effectiveness of conventional antibiotics. However, this requires thorough study of the effectiveness of defensins in combination with antibiotics against a large number of bacterial strains with known phenotypes of antibiotic resistance. The aim of this work was to study the antibacterial effect of HNP-1, hBD-1 and hBD-3 in combination with rifampicin or amikacin against clinical isolates of ( = 27) and ( = 24) collected from hospitalized patients.

METHODS

The standard checkerboard assay was used to determine minimum inhibitory concentrations (MICs) of antimicrobials. The combined microbicidal effects of two substances (defensin + conventional antibiotic) were assessed by the fractional inhibitory concentration index (FICI).

RESULTS

The highest anti-staphylococcal activity (including methicillin-resistant strains) among defensins was demonstrated by hBD-3 that had MIC of 1 (0.5-4) mg/L (hereinafter, MIC values are presented as median and interquartile range). The MIC of HNP-1 against was 4 (2-8) mg/L; the MIC of hBD-1 was 8 (4-8) mg/L. Against , the most effective was also found to be hBD-3 that had MIC of 4 (4-8) mg/L; the MIC of HNP-1 was 12 (4-32) mg/L. The combinations of HNP-1 + rifampicin and hBD-3 + rifampicin demonstrated synergistic effects against . . Against , combinations of HNP-1 + amikacin and hBD-3 + amikacin also showed synergy of action.

摘要

背景

抗生素耐药性这一全球性问题需要寻找和开发新的治疗方法。一种有前景的策略是使用低剂量的抗菌肽,特别是人类防御素HNP - 1、hBD - 1和hBD - 3,并与临床实践中已使用的抗菌药物联合使用。这种方法可用于提高传统抗生素的疗效。然而,这需要深入研究防御素与抗生素联合使用对大量具有已知抗生素耐药表型的细菌菌株的有效性。本研究的目的是研究HNP - 1、hBD - 1和hBD - 3与利福平或阿米卡星联合使用对从住院患者中分离出的27株金黄色葡萄球菌和24株大肠杆菌的抗菌作用。

方法

采用标准棋盘稀释法测定抗菌药物的最低抑菌浓度(MIC)。通过分数抑菌浓度指数(FICI)评估两种物质(防御素+传统抗生素)的联合杀菌效果。

结果

在防御素中,hBD - 3对金黄色葡萄球菌(包括耐甲氧西林菌株)表现出最高的抗菌活性,其MIC为1(0.5 - 4)mg/L(以下,MIC值以中位数和四分位数间距表示)。HNP - 1对金黄色葡萄球菌的MIC为4(2 - 8)mg/L;hBD - 1的MIC为8(4 - 8)mg/L。对于大肠杆菌,最有效的也是hBD - 3,其MIC为4(4 - 8)mg/L;HNP - 1的MIC为12(4 - 32)mg/L。HNP - 1 +利福平以及hBD - 3 +利福平的组合对金黄色葡萄球菌表现出协同作用。对于大肠杆菌,HNP - 1 +阿米卡星和hBD - 3 +阿米卡星的组合也显示出协同作用。

相似文献

1
Antibacterial activity of human defensins against and .
PeerJ. 2020 Nov 25;8:e10455. doi: 10.7717/peerj.10455. eCollection 2020.
3
Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo.
Fundam Clin Pharmacol. 2020 Feb;34(1):102-108. doi: 10.1111/fcp.12499. Epub 2019 Aug 5.
6
Host Cationic Antimicrobial Molecules Inhibit S. aureus Exotoxin Production.
mSphere. 2023 Feb 21;8(1):e0057622. doi: 10.1128/msphere.00576-22. Epub 2023 Jan 4.
8
Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2.
Antimicrob Agents Chemother. 2014 Nov;58(11):6896-903. doi: 10.1128/AAC.03628-14. Epub 2014 Sep 8.
10
Evaluation of susceptibility of gram-positive and -negative bacteria to human defensins by using radial diffusion assay.
Antimicrob Agents Chemother. 1996 Oct;40(10):2280-4. doi: 10.1128/AAC.40.10.2280.

引用本文的文献

2
Global prevalence of macrolide-resistant spp.: a comprehensive systematic review and meta-analysis.
Front Microbiol. 2025 Mar 14;16:1524452. doi: 10.3389/fmicb.2025.1524452. eCollection 2025.
3
The Sensitivity of Opportunistic Bacteria to Blood Serum Low-Molecular Fraction Containing Antimicrobial Peptides and Proteins.
Bull Exp Biol Med. 2025 Jan;178(3):339-345. doi: 10.1007/s10517-025-06333-x. Epub 2025 Feb 13.
7
Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria.
Antibiotics (Basel). 2023 Oct 6;12(10):1518. doi: 10.3390/antibiotics12101518.
8
Mechanisms and regulation of defensins in host defense.
Signal Transduct Target Ther. 2023 Aug 14;8(1):300. doi: 10.1038/s41392-023-01553-x.
9
Role of defensins in diabetic wound healing.
World J Diabetes. 2022 Nov 15;13(11):962-971. doi: 10.4239/wjd.v13.i11.962.

本文引用的文献

1
The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma.
Aust J Chem. 2019;73(3):96-103. doi: 10.1071/CH19449. Epub 2019 Nov 11.
2
FDA approved antibacterial drugs: 2018-2019.
Discoveries (Craiova). 2019 Dec 31;7(4):e102. doi: 10.15190/d.2019.15.
3
Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms.
Peptides. 2020 Jan;123:170177. doi: 10.1016/j.peptides.2019.170177. Epub 2019 Nov 5.
4
The antimicrobial peptides and their potential clinical applications.
Am J Transl Res. 2019 Jul 15;11(7):3919-3931. eCollection 2019.
5
Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo.
Fundam Clin Pharmacol. 2020 Feb;34(1):102-108. doi: 10.1111/fcp.12499. Epub 2019 Aug 5.
7
Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria.
Microb Drug Resist. 2018 Jul/Aug;24(6):747-767. doi: 10.1089/mdr.2017.0392. Epub 2018 Jun 29.
8
Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections.
J Orthop Res. 2018 Jan;36(1):22-32. doi: 10.1002/jor.23656. Epub 2017 Aug 11.
9
Perspectives for clinical use of engineered human host defense antimicrobial peptides.
FEMS Microbiol Rev. 2017 May 1;41(3):323-342. doi: 10.1093/femsre/fux012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验