Suppr超能文献

腹侧视觉通路中用于检测构成图形的曲率圆的细胞模型。

A cell model in the ventral visual pathway for the detection of circles of curvature constituting figures.

作者信息

Kawakami Susumu, Ito Takehiro, Makino Yoshinari, Hashimoto Makoto, Yano Masafumi

机构信息

Tohoku University, Research Institute of Electrical Communication, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Tohoku Gakuin University, Department of Information Science, Faculty of Liberal Arts, 2-1-1 Tenjinzawa, Izumi-ku, Sendai 981-3193, Japan.

出版信息

Heliyon. 2020 Nov 30;6(11):e05397. doi: 10.1016/j.heliyon.2020.e05397. eCollection 2020 Nov.

Abstract

The contour of an arbitrary figure can be represented as a group of circles of curvature in contact with it, with each curvature circle represented by its center O and radius r. We propose a series of cell models for detecting this circle, which is composed of a lateral geniculate nucleus (LGN) cell, nondirectionally selective (NDS) simple cell, and curvature-circle detection cell (CDC). The LGN and NDS simple cells were previously modeled. The CDC has been modeled as follows. Each tangent in contact with this circle is detected by an NDS simple cell that performs the Hough transformation of LGN cell responses, and then this tangent is transformed to a three-dimensional (3D) normal line in a CDC column. This transformation has been named a 3D normal-line transform. Performing this transformation for all tangents causes a CDC at the intersection of these normal lines to fire most intensively, and thus the O and r of the circle is detected as the coordinates of this intersection. Therefore, the CDC has been modeled as this 3D normal-line transform. Based on this CDC, we model two types of constancy CDC: a position-invariant CDC and a curvature-invariant CDC. These three types of CDC reflect the response to various stimuli in actual area V4 cells. In order to validate these CDC types neurophysiologically, we propose an experimental method using microelectrodes. Cell models previously reported correspond to this hierarchy: the S1, S2, and C2 cells correspond to the NDS simple cell, CDC, and position-invariant CDC, respectively.

摘要

任意图形的轮廓可表示为与之相切的一组曲率圆,每个曲率圆由其圆心O和半径r表示。我们提出了一系列用于检测此圆的细胞模型,该模型由外侧膝状体(LGN)细胞、非定向选择性(NDS)简单细胞和曲率圆检测细胞(CDC)组成。LGN和NDS简单细胞此前已被建模。CDC的建模如下。与该圆相切的每条切线由执行LGN细胞响应的霍夫变换的NDS简单细胞检测,然后该切线在CDC柱中转换为三维(3D)法线。这种变换被称为3D法线变换。对所有切线执行此变换会使这些法线交点处的CDC强烈放电,从而将圆的O和r检测为该交点的坐标。因此,CDC被建模为这种3D法线变换。基于此CDC,我们对两种类型的恒常性CDC进行建模:位置不变CDC和曲率不变CDC。这三种类型的CDC反映了实际V4区细胞对各种刺激的反应。为了从神经生理学角度验证这些CDC类型,我们提出了一种使用微电极的实验方法。先前报道的细胞模型对应于这种层次结构:S1、S2和C2细胞分别对应于NDS简单细胞、CDC和位置不变CDC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/371f/7711303/2cdc4384e2ee/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验