Suppr超能文献

学习 V4 细胞中的形状选择性模型揭示了大脑中的形状编码机制。

Learning a Model of Shape Selectivity in V4 Cells Reveals Shape Encoding Mechanisms in the Brain.

机构信息

Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario M3J 1P3, Canada

Center for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada.

出版信息

J Neurosci. 2023 May 31;43(22):4129-4143. doi: 10.1523/JNEUROSCI.1467-22.2023. Epub 2023 Apr 25.

Abstract

The mechanisms involved in transforming early visual signals to curvature representations in V4 are unknown. We propose a hierarchical model that reveals V1/V2 encodings that are essential components for this transformation to the reported curvature representations in V4. Then, by relaxing the often-imposed prior of a single Gaussian, V4 shape selectivity is learned in the last layer of the hierarchy from Macaque V4 responses. We found that V4 cells integrate multiple shape parts from the full spatial extent of their receptive fields with similar excitatory and inhibitory contributions. Our results uncover new details in existing data about shape selectivity in V4 neurons that with additional experiments can enhance our understanding of processing in this area. Accordingly, we propose designs for a stimulus set that allow removing shape parts without disturbing the curvature signal to isolate part contributions to V4 responses. Selectivity to convex and concave shape parts in V4 neurons has been repeatedly reported. Nonetheless, the mechanisms that yield such selectivities in the ventral stream remain unknown. We propose a hierarchical computational model that incorporates findings of the various visual areas involved in shape processing and suggest mechanisms that transform the shape signal from low-level features to convex/concave part representations. Learning shape selectivity from Macaque V4 responses in the final processing stage in our model, we found that V4 neurons integrate shape parts from the full spatial extent of their receptive field with both facilitatory and inhibitory contributions. These results reveal hidden information in existing V4 data that with additional experiments can enhance our understanding of processing in V4.

摘要

V4 中将早期视觉信号转换为曲率表示的机制尚不清楚。我们提出了一个分层模型,揭示了 V1/V2 的编码,这些编码是将曲率表示转换为 V4 报告的曲率表示的重要组成部分。然后,通过放宽通常施加的单个高斯的先验,从猕猴 V4 反应中在层次结构的最后一层学习 V4 形状选择性。我们发现 V4 细胞从其感受野的整个空间范围整合多个形状部分,具有相似的兴奋和抑制贡献。我们的结果揭示了关于 V4 神经元形状选择性的现有数据中的新细节,通过额外的实验可以增强我们对该区域处理的理解。因此,我们提出了一个刺激集的设计,允许在不干扰曲率信号的情况下去除形状部分,以分离对 V4 反应的部分贡献。V4 神经元对凸形和凹形形状部分的选择性已被反复报道。然而,腹侧流中产生这种选择性的机制仍然未知。我们提出了一个分层计算模型,该模型结合了参与形状处理的各个视觉区域的发现,并提出了将形状信号从低级特征转换为凸/凹部分表示的机制。在我们的模型中,从猕猴 V4 反应中学习形状选择性,我们发现 V4 神经元从其感受野的整个空间范围整合形状部分,具有促进和抑制作用。这些结果揭示了现有 V4 数据中的隐藏信息,通过额外的实验可以增强我们对 V4 处理的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验