Suppr超能文献

氨基葡萄糖在糖尿病神经病变发展中的作用:独立于醛糖还原酶途径

Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway.

作者信息

Mizukami Hiroki, Osonoi Sho, Takaku Shizuka, Yamagishi Shin-Ichiro, Ogasawara Saori, Sango Kazunori, Chung Sookja, Yagihashi Soroku

机构信息

Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo.

出版信息

Brain Commun. 2020 Oct 9;2(2):fcaa168. doi: 10.1093/braincomms/fcaa168. eCollection 2020.

Abstract

Long-term metabolic aberrations contribute to the development of diabetic neuropathy but the precise mechanism or mechanisms remains elusive. We have previously shown that aldose reductase-deficient mice exhibit delayed onset and progression of neuropathy following induction of diabetes, suggesting a role both for downstream metabolites of this enzyme and also for other unrelated pathways. In this study, we have utilized comprehensive metabolomics analyses to identify potential neurotoxic metabolites in nerve of diabetic mice and explored the mechanism of peripheral nerve injury. Aldose reductase knockout and control C57Bl/6J mice were made diabetic by injection of streptozotocin and followed for 8-16 weeks. Diabetic aldose reductase knockout mice exhibited delayed onset of nerve conduction slowing compared to diabetic wild-type mice. The sciatic nerves from aldose reductase knockout mice exposed to 12 weeks of diabetes were used for metabolomics analysis and compared with analyses of nerves from age-matched diabetic wild-type mice as well as non-diabetic aldose reductase knockout and wild-type mice. Neurotoxicity of candidate metabolites was evaluated using cultured Schwann cells and dorsal root ganglion neurons, and further confirmed . Metabolomics analysis identified elevated glucosamine levels in both diabetic aldose reductase knockout and diabetic wild mice. Exposure to glucosamine reduced survival of cultured Schwann cells and neurons accompanied by increased expression of cleaved caspase 3, CCAT-enhancer-binding homologous protein and mitochondrial hexokinase-I, along with ATP depletion. These changes were suppressed by siRNA to hexokinase-I or the ATP donor, inosine, but not by the antioxidant N-acetylcysteine or the endoplasmic reticulum-stress inhibitor 4-phenylbutyrate. The O-GlcNAcylation enhancer, O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino N-phenylcarbamate, did not augment glucosamine neurotoxicity. Single dose glucosamine injection into mice caused a reduction of sciatic nerve Na, K-ATPase activity, ATP content and augmented expression of hexokinase-I, which were suppressed by pretreatment with inosine but not with 4-phenylbutyrate. Mice implanted with a subcutaneous pump to infuse glucosamine for 12 weeks developed nerve conduction slowing and intraepidermal nerve fibre loss, recapitulating prominent indices of diabetic neuropathy. While acute glucosamine neurotoxicity is unlikely to contribute substantially to the slowly developing neuropathy phenotype in humans, sustained energy deprivation induced by glucosamine may well contribute to the pathogenesis of diabetic neuropathy. Our data thus identifies a novel pathway for diabetic neuropathy that may offer a potential new therapeutic target.

摘要

长期的代谢异常会导致糖尿病性神经病变的发生,但确切的机制仍不清楚。我们之前已经表明,醛糖还原酶缺陷型小鼠在诱导糖尿病后神经病变的发病和进展延迟,这表明该酶的下游代谢产物以及其他不相关途径都发挥了作用。在本研究中,我们利用综合代谢组学分析来确定糖尿病小鼠神经中潜在的神经毒性代谢产物,并探讨周围神经损伤的机制。通过注射链脲佐菌素使醛糖还原酶基因敲除小鼠和对照C57Bl/6J小鼠患糖尿病,并持续观察8 - 16周。与糖尿病野生型小鼠相比,糖尿病醛糖还原酶基因敲除小鼠神经传导减慢的发病延迟。将暴露于糖尿病12周的醛糖还原酶基因敲除小鼠的坐骨神经用于代谢组学分析,并与年龄匹配的糖尿病野生型小鼠以及非糖尿病醛糖还原酶基因敲除和野生型小鼠的神经分析结果进行比较。使用培养的雪旺细胞和背根神经节神经元评估候选代谢产物的神经毒性,并进一步得到证实。代谢组学分析发现糖尿病醛糖还原酶基因敲除小鼠和糖尿病野生型小鼠的氨基葡萄糖水平均升高。暴露于氨基葡萄糖会降低培养的雪旺细胞和神经元的存活率,同时伴随着裂解的半胱天冬酶3、CCAT增强子结合同源蛋白和线粒体己糖激酶-I的表达增加,以及ATP耗竭。这些变化可被针对己糖激酶-I的小干扰RNA或ATP供体肌苷抑制,但不能被抗氧化剂N - 乙酰半胱氨酸或内质网应激抑制剂4 - 苯基丁酸抑制。O - 连接的N - 乙酰葡糖胺糖基化增强剂O - (2 - 乙酰氨基 - 2 - 脱氧 - D - 吡喃葡萄糖亚基)氨基N - 苯基氨基甲酸酯不会增强氨基葡萄糖的神经毒性。给小鼠单次注射氨基葡萄糖会导致坐骨神经钠钾ATP酶活性降低、ATP含量减少以及己糖激酶-I表达增加,这些变化可被肌苷预处理抑制,但不能被4 - 苯基丁酸抑制。植入皮下泵输注氨基葡萄糖12周的小鼠出现神经传导减慢和表皮内神经纤维丢失,重现了糖尿病性神经病变的主要指标。虽然急性氨基葡萄糖神经毒性不太可能对人类缓慢发展的神经病变表型有实质性贡献,但氨基葡萄糖诱导的持续能量剥夺很可能促成糖尿病性神经病变的发病机制。因此,我们的数据确定了一条糖尿病性神经病变的新途径,可能提供一个潜在的新治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7c/7713992/af80efb9bec1/fcaa168f10.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验