Liu Jian, Ye Gang, Potgieser Hinderikus G O, Koopmans Marten, Sami Selim, Nugraha Mohamad Insan, Villalva Diego Rosas, Sun Hengda, Dong Jingjin, Yang Xuwen, Qiu Xinkai, Yao Chen, Portale Giuseppe, Fabiano Simone, Anthopoulos Thomas D, Baran Derya, Havenith Remco W A, Chiechi Ryan C, Koster L Jan Anton
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG, the Netherlands.
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG, The Netherlands.
Adv Mater. 2021 Jan;33(4):e2006694. doi: 10.1002/adma.202006694. Epub 2020 Dec 11.
There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m K is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.
对于有机热电材料,目前尚无在不降低电导率的情况下选择性提高塞贝克系数的分子策略。在此,有报道称在n型供体-受体共聚物中使用两亲性侧链可以选择性地提高塞贝克系数,从而使功率因数提高约5倍。两亲性侧链包含一个烷基链段作为聚合物主链与一个乙二醇型链段之间的间隔基。使用这种烷基间隔基不仅可以减少共轭聚合物薄膜中的能量无序,还能适当地控制远离主链的掺杂位点,从而将抗衡离子的不利影响降至最低。通过以主体-掺杂剂距离为唯一变量的动力学蒙特卡罗模拟证实,对于给定的电导率,较大的主体-掺杂剂距离导致的库仑相互作用减弱有助于提高塞贝克系数。最终,在掺杂聚合物薄膜中实现了18 μW m⁻² K⁻²的优化功率因数。这项工作提供了一种选择性提高塞贝克系数的简便分子策略,并为优化掺杂剂位置开辟了一条新途径,以实现更好的n型聚合物热电材料。