Suppr超能文献

用于符号回归的交互-变换进化算法

Interaction-Transformation Evolutionary Algorithm for Symbolic Regression.

作者信息

de Franca F O, Aldeia G S I

机构信息

Center for Mathematics, Computation and Cognition, Heuristics, Analysis and Learning Laboratory, Federal University of ABC, Santo Andre, Brazil

出版信息

Evol Comput. 2021 Sep 1;29(3):367-390. doi: 10.1162/evco_a_00285.

Abstract

Interaction-Transformation (IT) is a new representation for Symbolic Regression that reduces the space of solutions to a set of expressions that follow a specific structure. The potential of this representation was illustrated in prior work with the algorithm called SymTree. This algorithm starts with a simple linear model and incrementally introduces new transformed features until a stop criterion is met. While the results obtained by this algorithm were competitive with the literature, it had the drawback of not scaling well with the problem dimension. This article introduces a mutation-only Evolutionary Algorithm, called ITEA, capable of evolving a population of IT expressions. One advantage of this algorithm is that it enables the user to specify the maximum number of terms in an expression. In order to verify the competitiveness of this approach, ITEA is compared to linear, nonlinear, and Symbolic Regression models from the literature. The results indicate that ITEA is capable of finding equal or better approximations than other Symbolic Regression models while being competitive to state-of-the-art nonlinear models. Additionally, since this representation follows a specific structure, it is possible to extract the importance of each original feature of a data set as an analytical function, enabling us to automate the explanation of any prediction. In conclusion, ITEA is competitive when comparing to regression models with the additional benefit of automating the extraction of additional information of the generated models.

摘要

交互转换(IT)是符号回归的一种新表示形式,它将解空间缩减为一组遵循特定结构的表达式。这种表示形式的潜力在之前使用名为SymTree的算法的工作中得到了体现。该算法从一个简单的线性模型开始,逐步引入新的变换特征,直到满足停止标准。虽然该算法获得的结果与文献中的结果具有竞争力,但它存在一个缺点,即随着问题维度的增加扩展性不佳。本文介绍了一种仅包含变异的进化算法,称为ITEA,它能够进化出一组IT表达式。该算法的一个优点是它允许用户指定表达式中的最大项数。为了验证这种方法的竞争力,将ITEA与文献中的线性、非线性和符号回归模型进行了比较。结果表明,ITEA能够找到与其他符号回归模型相当或更好的近似值,同时与最先进的非线性模型具有竞争力。此外,由于这种表示形式遵循特定结构,因此可以将数据集每个原始特征的重要性提取为一个解析函数,从而使我们能够自动解释任何预测。总之,与回归模型相比,ITEA具有竞争力,并且还具有自动提取生成模型的额外信息的附加优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验