Suppr超能文献

蛋白质二级结构模体:一种运动学构造。

Protein secondary structure motifs: A kinematic construction.

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA.

出版信息

J Comput Chem. 2021 Feb 15;42(5):271-292. doi: 10.1002/jcc.26448. Epub 2020 Dec 11.

Abstract

The kinematic geometry of protein backbone structures, constrained by either single or multiple hydrogen bonds (H-bonds), possibly in a periodic array, is discussed. These structures include regular secondary structure elements α-helices and β-sheets but also include other short H-bond stabilized irregular structural elements like β-turns. The work here shows that the variations observed in such structures have simple geometrical correlations consistent with constrained motion kinematics. A new classification of the ideal helices is given, in terms of the parameter α, the angle at a C atom to its two neighboring C 's along the helix, and shown how it can be generalized to include nonideal helices. Specifically, we derive an analytical expression of the backbone dihedrals, (ϕ, ψ), in terms of the parameter α subject to the constraint that the peptide planes are parallel to the helical axis. Helices constructed in this way exhibit near-vertical alignment of the C = O and N - H units and are the canonical objects of this study. These expressions are easily modifiable to include perturbations of parameters relevant to nonplanar peptide units and noncanonical angles. The addition of a second parameter, ε , inclination of successive peptide planes along a helix with respect to the helical axis leads to a generalization of the previous expression and provides an efficient parametrization of such structures in terms of coordinates consistent with H-bond parameters. An analogs parametrization of β-turns, using inverse kinematic methods, is also given. Besides offering a unifying viewpoint, our results may find useful applications to protein and peptide design.

摘要

本文讨论了受单键或多键(氢键)约束的蛋白质骨架结构的运动学几何形状,这些氢键可能呈周期性排列。这些结构包括规则的二级结构元件α-螺旋和β-折叠,但也包括其他短氢键稳定的不规则结构元件,如β-转角。这里的工作表明,这些结构中观察到的变化具有与约束运动学一致的简单几何相关性。给出了理想螺旋的新分类,以参数α表示,即螺旋上某个 C 原子与其两个相邻 C'原子之间的角度,并展示了如何将其推广到包括非理想螺旋。具体来说,我们根据约束条件导出了骨架二面角(ϕ,ψ)的参数α的解析表达式,即肽平面与螺旋轴平行。以这种方式构建的螺旋表现出 C=O 和 N-H 单元的近乎垂直对齐,是本研究的典型对象。这些表达式可以轻松修改以包括与非平面肽单元和非典型角度相关的参数的扰动。增加第二个参数ε,即沿螺旋的连续肽平面相对于螺旋轴的倾斜度,导致对先前表达式的推广,并以与氢键参数一致的坐标有效地参数化这些结构。还使用逆运动学方法给出了β-转角的类似参数化。除了提供统一的观点外,我们的结果可能对蛋白质和肽设计有有用的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验