Kuster Daniel J, Liu Chengyu, Fang Zheng, Ponder Jay W, Marshall Garland R
Department of Biomedical Engineering, Washington University, St. Louis, MO, United States of America.
Department of Chemistry, Washington University, St. Louis, MO, United States of America.
PLoS One. 2015 Apr 20;10(4):e0123146. doi: 10.1371/journal.pone.0123146. eCollection 2015.
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.
蛋白质螺旋中非线性氢键的理论和实验证据随处可见。特别是,酰胺三中心氢键是蛋白质高分辨率晶体结构中螺旋的常见特征。这些高分辨率结构(名义晶体学分辨率为1.0至1.5 Å)确定了主链原子的位置,不受建模约束的显著偏差影响,并确定Φ = -62°,ψ = -43°为蛋白质螺旋的共识主链扭转角。这些扭转角保留了经典鲍林α-螺旋的α-β碳的原子位置,同时允许酰胺羰基形成如1967年Némethy等人首次提出的分叉氢键。使用第二代力场AMOEBA(用于生物分子应用的原子多极优化能量学)对水中一个封端的12残基寡聚丙氨酸进行分子动力学模拟,该力场包括多极静电和极化率,再现了实验观察到的高分辨率螺旋构象,并正确地将酰胺键羰基重新定向为分叉氢键。主链扭转角的这种简单改变协调了实验和理论观点,以提供一个统一的观点,即酰胺三中心氢键是蛋白质螺旋的关键组成部分。结构生物学家忽略它们的原因取决于酰胺键取向的小曲轴状变化,这种变化允许维持整体螺旋参数(螺旋螺距(p)和每圈残基数(n))。鲍林3.6(13)α-螺旋符合高分辨率实验数据,但酰胺羰基电子密度略有例外,不过之前相关的主链扭转角(Φ,Ψ)需要轻微修改才能与三原子中心氢键和多极静电相协调。因此,提出了一种新的标准螺旋,即3.6(13/10)-、Némethy-或N-螺旋。由于使用了单极力场的约束以及蛋白质电子密度低分辨率精修中假设的二级结构,PDB中的此类结构通常显示线性氢键。