Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Neuroimage. 2021 Feb 15;227:117613. doi: 10.1016/j.neuroimage.2020.117613. Epub 2020 Dec 8.
A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.
越来越多的经验证据支持这样一种观点,即人类大脑中学习诱导的可塑性变化是由多种神经生物学过程共同作用的。关于大脑可塑性如何依赖于认知任务的复杂性、它如何支持大脑系统之间的相互作用以及具有什么样的时间和空间轨迹,仍然存在一些悬而未决的问题。我们在 8 个月的时间里,对视力正常的成年人进行了触觉盲文阅读训练,在此期间,我们在 5 个不同的时间点监测了大脑结构和功能,以研究大脑和行为的变化。我们采用了一种新的多变量方法,包括行为数据和对组织特性敏感的特定 MRI 方案,以评估随时间推移的局部功能、结构和髓鞘变化。我们的研究结果表明,虽然阅读网络(位于腹侧枕颞皮质)能够快速适应触觉输入,但感觉区域的灰质体积和皮质内髓鞘在不同时间发生了变化。这种方法使我们能够在介观水平上检查和描述复杂认知系统及其(感觉)输入和(运动)输出的神经可塑性机制,并对其进行区分。