Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada.
Am J Physiol Endocrinol Metab. 2021 Feb 1;320(2):E234-E239. doi: 10.1152/ajpendo.00547.2020. Epub 2020 Dec 14.
Blood glucose and insulin homeostasis is disrupted during the progression of type 2 diabetes. Insulin levels and action are regulated by both peripheral and central responses that involve the intestine and microbiome. The intestine and its microbiota process nutrients and generate molecules that influence blood glucose and insulin. Peripheral insulin regulation is regulated by gut-segment-dependent nutrient sensing and microbial factors such as short-chain fatty acids and bile acids that engage G-protein-coupled receptors. Innate immune sensing of gut-derived bacterial cell wall components and lipopolysaccharides also alter insulin homeostasis. These bacterial metabolites and postbiotics influence insulin secretion and insulin clearance in part by altering endocrine responses such as glucagon-like peptide-1. Gut-derived bacterial factors can promote inflammation and insulin resistance, but other postbiotics can be insulin sensitizers. In parallel, activation of small intestinal sirtuin 1 increases insulin sensitivity by reversing high fat-induced hypothalamic insulin resistance through a gut-brain neuronal axis, whereas high fat-feeding alters small intestinal microbiome and increases taurochenodeoxycholic acid in the plasma and the dorsal vagal complex to induce insulin resistance. In summary, emerging evidence indicates that intestinal molecular signaling involving nutrient sensing and the host-microbe symbiosis alters insulin homeostasis and action. Gut-derived host endocrine and paracrine factors as well as microbial metabolites act on the liver, pancreas, and the brain, and in parallel on the gut-brain neuronal axis. Understanding common nodes of peripheral and central insulin homeostasis and action may reveal new ways to target the intestinal host-microbe relationship in obesity, metabolic disease, and type 2 diabetes.
血糖和胰岛素稳态在 2 型糖尿病的进展过程中被打乱。胰岛素水平和作用受到外周和中枢反应的调节,涉及肠道和微生物组。肠道及其微生物群处理营养物质并产生影响血糖和胰岛素的分子。外周胰岛素调节受肠道依赖性营养感知和微生物因素的调节,如短链脂肪酸和胆酸,它们与 G 蛋白偶联受体结合。肠道衍生的细菌细胞壁成分和内毒素的先天免疫感应也改变胰岛素稳态。这些细菌代谢物和后生元通过改变肠促胰岛素等内分泌反应来影响胰岛素分泌和胰岛素清除。肠道衍生的细菌因素可以促进炎症和胰岛素抵抗,但其他后生元可以作为胰岛素敏化剂。与此同时,小肠 SIRT1 的激活通过肠道-大脑神经元轴逆转高脂肪诱导的下丘脑胰岛素抵抗来增加胰岛素敏感性,而高脂肪饮食改变小肠微生物组并增加牛磺胆酸在血浆和迷走神经复合体中的含量,以诱导胰岛素抵抗。总之,新出现的证据表明,涉及营养感知和宿主-微生物共生的肠道分子信号改变了胰岛素的稳态和作用。肠道来源的宿主内分泌和旁分泌因子以及微生物代谢物作用于肝脏、胰腺和大脑,同时作用于肠道-大脑神经元轴。了解外周和中枢胰岛素稳态和作用的共同节点可能揭示靶向肥胖、代谢性疾病和 2 型糖尿病中肠道宿主-微生物关系的新方法。