文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道菌群及其与脑的相互作用在调控摄食和能量平衡中的作用

The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis.

机构信息

Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain.

出版信息

Int J Mol Sci. 2021 May 29;22(11):5830. doi: 10.3390/ijms22115830.


DOI:10.3390/ijms22115830
PMID:34072450
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8198395/
Abstract

Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota-diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota-brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut-endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota-diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut-brain axis function and, thus, combat obesity.

摘要

肥胖目前是全球面临的一个主要社会和健康挑战。其流行程度已达到流行的程度,且趋势持续上升,反映出需要采取更有效的预防措施。控制能量平衡以响应食物摄入的下丘脑回路是体重管理的有趣目标,例如通过加强肠道到大脑营养信号的干预,其功能障碍导致肥胖。肠道微生物群-饮食相互作用可能会干扰肠道到大脑的营养感应和信号传递,在大脑中处理信息以控制能量平衡。这种肠道微生物群-大脑串扰是由代谢物介导的,主要是短链脂肪酸、次级胆汁酸或氨基酸衍生的代谢物和亚细胞细菌成分。这些代谢物激活肠道内分泌和/或神经介导的途径,或传递到全身循环,然后到达大脑。进食时间和饮食成分是肠道微生物群结构和功能的主要驱动因素。因此,异常的进食模式或不健康的饮食可能会改变肠道微生物群-饮食相互作用,并改变营养物质的可用性和/或微生物配体传递食物摄入时的信息从肠道到大脑,从而损害能量平衡。在此,我们更新了支持肠道微生物群是新型饮食和非饮食生物产品来源的科学证据,这些产品可能有益于调节肠道到大脑的通讯,从而改善代谢健康。此外,我们评估了进食时间和饮食成分如何调节肠道微生物群,从而调节这些具有潜在能量平衡影响的生物产品的腔内可用性。该综述还确定了知识差距和需要取得的进展,以便将基于微生物组的策略应用于临床,以改善肠道-大脑轴的功能,从而对抗肥胖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b921/8198395/fd06209ec58b/ijms-22-05830-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b921/8198395/fd06209ec58b/ijms-22-05830-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b921/8198395/fd06209ec58b/ijms-22-05830-g001.jpg

相似文献

[1]
The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis.

Int J Mol Sci. 2021-5-29

[2]
From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?

Hormones (Athens). 2019-3-6

[3]
Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite.

J Nutr. 2017-5

[4]
The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals.

Annu Rev Anim Biosci. 2019-11-5

[5]
Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.

J Int Soc Sports Nutr. 2016-11-24

[6]
2'-fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice.

Nutrients. 2020-4-5

[7]
Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

Curr Protein Pept Sci. 2017

[8]
Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

Mol Metab. 2016-10-13

[9]
Gut Microbiota-Dependent Modulation of Energy Metabolism.

J Innate Immun. 2017-11-8

[10]
The microbiota-gut-brain axis in obesity.

Lancet Gastroenterol Hepatol. 2017-8-24

引用本文的文献

[1]
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection.

Pathogens. 2025-7-30

[2]
Conceptual Framework for Nutritional Psychology as a New Field of Research.

Behav Sci (Basel). 2025-7-24

[3]
The influence of gut microbiota on the gut-brain-kidney axis and its implications for chronic kidney disease.

Front Microbiol. 2025-7-9

[4]
Probiotic supplementation regulated swine growth performance, fecal odor reduction and carcass characteristics by modulating intestinal microbiome.

Anim Microbiome. 2025-7-16

[5]
Gut Feelings: How Microbes, Diet, and Host Immunity Shape Disease.

Biomedicines. 2025-5-31

[6]
Sex differences in ketogenic diet: are men more likely than women to lose weight?

Front Nutr. 2025-6-4

[7]
A Cross-Sectional Comparative Study: Could Asprosin and Peptide Tyrosine-Tyrosine Be Used in Schizophrenia to Define the Disease and Determine Its Phases?

Diagnostics (Basel). 2025-3-5

[8]
Serum Asprosin and Peptide Tyrosine Tyrosine (PYY) Levels in Bipolar Disorder.

J Clin Med. 2025-2-5

[9]
Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors.

EMBO Mol Med. 2025-2

[10]
The Gut Microbiota Is Involved in the Regulation of Cognitive Flexibility in Adolescent BALB/c Mice Exposed to Chronic Physical Stress and a High-Fat Diet.

Microorganisms. 2024-12-10

本文引用的文献

[1]
Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity.

Nutrients. 2021-4-7

[2]
The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations.

Nutrients. 2021-4-3

[3]
Obesity and Dietary Added Sugar Interact to Affect Postprandial GLP-1 and Its Relationship to Striatal Responses to Food Cues and Feeding Behavior.

Front Endocrinol (Lausanne). 2021

[4]
Diets Varying in Carbohydrate Content Differentially Alter Brain Activity in Homeostatic and Reward Regions in Adults.

J Nutr. 2021-8-7

[5]
High-Protein or Low Glycemic Index Diet-Which Energy-Restricted Diet Is Better to Start a Weight Loss Program?

Nutrients. 2021-3-26

[6]
The metabolic impact of small intestinal nutrient sensing.

Nat Commun. 2021-2-10

[7]
Effects of carbohydrate restriction on postprandial glucose metabolism, -cell function, gut hormone secretion, and satiety in patients with Type 2 diabetes.

Am J Physiol Endocrinol Metab. 2021-1-1

[8]
Bile Acids: A Communication Channel in the Gut-Brain Axis.

Neuromolecular Med. 2021-3

[9]
Gut Microbiota-Induced Changes in β-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Alcohol Use Disorder.

Cell Rep. 2020-10-13

[10]
γ-Aminobutyric acid (GABA) activates neuronal cells by inducing the secretion of exosomes from intestinal cells.

Food Funct. 2020-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索