Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain.
Int J Mol Sci. 2021 May 29;22(11):5830. doi: 10.3390/ijms22115830.
Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota-diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota-brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut-endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota-diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut-brain axis function and, thus, combat obesity.
肥胖目前是全球面临的一个主要社会和健康挑战。其流行程度已达到流行的程度,且趋势持续上升,反映出需要采取更有效的预防措施。控制能量平衡以响应食物摄入的下丘脑回路是体重管理的有趣目标,例如通过加强肠道到大脑营养信号的干预,其功能障碍导致肥胖。肠道微生物群-饮食相互作用可能会干扰肠道到大脑的营养感应和信号传递,在大脑中处理信息以控制能量平衡。这种肠道微生物群-大脑串扰是由代谢物介导的,主要是短链脂肪酸、次级胆汁酸或氨基酸衍生的代谢物和亚细胞细菌成分。这些代谢物激活肠道内分泌和/或神经介导的途径,或传递到全身循环,然后到达大脑。进食时间和饮食成分是肠道微生物群结构和功能的主要驱动因素。因此,异常的进食模式或不健康的饮食可能会改变肠道微生物群-饮食相互作用,并改变营养物质的可用性和/或微生物配体传递食物摄入时的信息从肠道到大脑,从而损害能量平衡。在此,我们更新了支持肠道微生物群是新型饮食和非饮食生物产品来源的科学证据,这些产品可能有益于调节肠道到大脑的通讯,从而改善代谢健康。此外,我们评估了进食时间和饮食成分如何调节肠道微生物群,从而调节这些具有潜在能量平衡影响的生物产品的腔内可用性。该综述还确定了知识差距和需要取得的进展,以便将基于微生物组的策略应用于临床,以改善肠道-大脑轴的功能,从而对抗肥胖。
Int J Mol Sci. 2021-5-29
Hormones (Athens). 2019-3-6
Annu Rev Anim Biosci. 2019-11-5
J Int Soc Sports Nutr. 2016-11-24
Curr Protein Pept Sci. 2017
Mol Metab. 2016-10-13
J Innate Immun. 2017-11-8
Lancet Gastroenterol Hepatol. 2017-8-24
Behav Sci (Basel). 2025-7-24
Biomedicines. 2025-5-31
J Clin Med. 2025-2-5
Nutrients. 2021-4-7
Nat Commun. 2021-2-10
Am J Physiol Endocrinol Metab. 2021-1-1
Neuromolecular Med. 2021-3