Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T2B5, Canada.
Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T1Z3, Canada.
Am J Hum Genet. 2021 Jan 7;108(1):148-162. doi: 10.1016/j.ajhg.2020.11.011. Epub 2020 Dec 11.
SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3β, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3β, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.
SYNGAP1 是一种神经元 Ras 和 Rap GTP 酶激活蛋白,在调节兴奋性突触可塑性方面具有重要作用。虽然许多 SYNGAP1 错义突变和无义突变与智力障碍、癫痫、精神分裂症和自闭症谱系障碍 (ASD) 有关,但它们是否以及如何导致个体疾病表型通常是未知的。在这里,我们在七个检测中对七个基因进行了 57 种变异分析,以检测 SYNGAP1 功能的多个方面。具体来说,我们使用多重磷酸化流式细胞术来测量蛋白稳定性、pERK、pGSK3β、pp38、pCREB 的变异影响,并用高内涵成像来检测亚细胞定位。我们发现,这些变体的功能从完全失去功能 (LoF) 到与野生型 (WT) 相似,在调节 pERK 和 pGSK3β 方面,而所有变体都至少保留了部分去磷酸化 pCREB 的能力。有趣的是,我们的检测结果显示,与位于更好研究的催化结构域内的变体相比,位于包含 SYNGAP1 羧基端一半的无序结构域 (DUF) 内的更大比例的变体表现出更高的 LoF。此外,我们发现蛋白不稳定性是仅两个错义变体功能障碍的主要原因,这两个变体都位于催化结构域内。通过高内涵成像,我们发现位于已知介导膜脂相互作用的 C2 结构域内的变体比 WT SYNGAP1 表现出更大的细胞质斑点。此外,这种亚细胞表型不仅与改变的催化活性相关,而且与信号检测结果存在独特的偏差,突出了导致变体功能障碍的多种独立分子机制。我们的多维数据集允许根据功能表型对变体进行聚类,并提供用于致病性预测的高置信度、多功能测量方法。