Suppr超能文献

调控人神经细胞发育过程中的树突成熟、突触功能和网络活动。

Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons.

机构信息

Department of Neuroscience, Scripps Research, Jupiter, Florida 33458.

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030.

出版信息

J Neurosci. 2020 Oct 7;40(41):7980-7994. doi: 10.1523/JNEUROSCI.1367-20.2020. Epub 2020 Sep 4.

Abstract

is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in null neurons. We conclude that regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of -related disorders. is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of disorders.

摘要

是全球发育迟缓、自闭症谱系障碍和癫痫性脑病的主要遗传风险因素。该基因的功能丧失变异导致一种神经发育障碍,其特征为认知障碍、社交沟通障碍和早发性癫痫发作。在小鼠和大鼠神经元中的细胞生物学研究表明,调节发育中的兴奋性突触结构和功能,功能丧失变异导致更大的树突棘和更强的谷氨酸能传递。然而,迄今为止的研究仅限于小鼠和大鼠神经元。因此,尚不清楚功能丧失如何影响人类神经元的发育和功能。为了解决这个问题,我们使用 CRISPR/Cas9 技术在来自商业上可获得的诱导多能干细胞系(hiPSC)的神经元中敲除蛋白表达,该干细胞系来自一名人类女性供体。在发育中的 hiPSC 衍生神经元中降低 SynGAP 蛋白表达会增强树突形态发生,导致与来自同基因对照的神经元相比更大的神经元。与更大的树突场一致,我们还观察到在包含这些神经元的培养物中存在更多形态定义的兴奋性突触。此外,具有降低的 SynGAP 蛋白的神经元具有更强的兴奋性突触,并且在发育早期表达更早的突触活性。最后,在缺失神经元中,分布式网络尖峰活动出现得更早,幅度显著增加,并表现出更大的爆发行为。我们得出结论,调节来自 hiPSC 的人类神经元的有丝后成熟,这影响了新生神经网络内活动的发展。这种基本神经发育过程的改变可能导致相关疾病的病因。是全球发育迟缓、自闭症谱系障碍和癫痫性脑病的主要遗传风险因素。虽然该基因在啮齿动物神经元中研究得很好,但它在人类神经元中的功能仍然未知。我们使用 CRISPR/Cas9 技术在诱导多能干细胞系衍生的神经元中破坏蛋白表达。我们发现缺乏 SynGAP 表达的诱导神经元表现出加速的树突形态发生、增加的突触后标志物积累、早期表达的突触活性、增强的兴奋性突触强度以及神经网络活动的早期出现。我们得出结论,调节发育中人类神经元的有丝后分化率,破坏这个过程会影响新生神经网络的功能。这些改变的发育过程可能导致疾病的病因。

相似文献

1
Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons.
J Neurosci. 2020 Oct 7;40(41):7980-7994. doi: 10.1523/JNEUROSCI.1367-20.2020. Epub 2020 Sep 4.
2
Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders.
Mol Cell Neurosci. 2018 Sep;91:140-150. doi: 10.1016/j.mcn.2018.03.008. Epub 2018 Mar 24.
3
SYNGAP1 mutations: Clinical, genetic, and pathophysiological features.
Int J Dev Neurosci. 2019 Nov;78:65-76. doi: 10.1016/j.ijdevneu.2019.08.003. Epub 2019 Aug 24.
4
Mouse models of -related intellectual disability.
Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2308891120. doi: 10.1073/pnas.2308891120. Epub 2023 Sep 5.
7
Haploinsufficiency of in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice.
J Neurosci. 2024 Nov 27;44(48):e1264232024. doi: 10.1523/JNEUROSCI.1264-23.2024.
8
Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly.
Biol Psychiatry. 2015 May 1;77(9):805-15. doi: 10.1016/j.biopsych.2014.08.001. Epub 2014 Aug 13.
9
Multi-parametric analysis of 57 SYNGAP1 variants reveal impacts on GTPase signaling, localization, and protein stability.
Am J Hum Genet. 2021 Jan 7;108(1):148-162. doi: 10.1016/j.ajhg.2020.11.011. Epub 2020 Dec 11.
10
Mouse models of -related intellectual disability.
bioRxiv. 2023 May 26:2023.05.25.542312. doi: 10.1101/2023.05.25.542312.

引用本文的文献

2
CA1 Pyramidal Neurons Exhibit Upregulated Translation of Long MRNAs Associated with LTP.
eNeuro. 2025 May 19;12(5). doi: 10.1523/ENEURO.0086-25.2025. Print 2025 May.
3
Quantifying neurobehavioral profiles across neurodevelopmental genetic syndromes and idiopathic neurodevelopmental disorders.
Dev Med Child Neurol. 2025 May;67(5):618-629. doi: 10.1111/dmcn.16112. Epub 2024 Nov 11.
4
A genome-wide association study of adults with community-acquired pneumonia.
Respir Res. 2024 Oct 16;25(1):374. doi: 10.1186/s12931-024-03009-4.
5
Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury.
Stem Cell Reports. 2024 Oct 8;19(10):1451-1473. doi: 10.1016/j.stemcr.2024.08.007. Epub 2024 Sep 19.
6
Developmental and epileptic encephalopathies.
Nat Rev Dis Primers. 2024 Sep 5;10(1):61. doi: 10.1038/s41572-024-00546-6.
7
Behavioural and neurodevelopmental characteristics of SYNGAP1.
J Neurodev Disord. 2024 Aug 15;16(1):46. doi: 10.1186/s11689-024-09563-8.
9
SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo.
Neuron. 2024 Sep 25;112(18):3058-3068.e8. doi: 10.1016/j.neuron.2024.07.007. Epub 2024 Aug 6.
10
Targeting TrkB-PSD-95 coupling to mitigate neurological disorders.
Neural Regen Res. 2025 Mar 1;20(3):715-724. doi: 10.4103/NRR.NRR-D-23-02000. Epub 2024 May 13.

本文引用的文献

1
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
2
Twenty Years of SynGAP Research: From Synapses to Cognition.
J Neurosci. 2020 Feb 19;40(8):1596-1605. doi: 10.1523/JNEUROSCI.0420-19.2020.
4
Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism.
Cell. 2020 Feb 6;180(3):568-584.e23. doi: 10.1016/j.cell.2019.12.036. Epub 2020 Jan 23.
7
A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons.
Sci Rep. 2019 Jun 21;9(1):9000. doi: 10.1038/s41598-019-45265-1.
8
Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons.
Nat Neurosci. 2019 Feb;22(2):243-255. doi: 10.1038/s41593-018-0295-x. Epub 2019 Jan 7.
9
Latent Sex Differences in Molecular Signaling That Underlies Excitatory Synaptic Potentiation in the Hippocampus.
J Neurosci. 2019 Feb 27;39(9):1552-1565. doi: 10.1523/JNEUROSCI.1897-18.2018. Epub 2018 Dec 21.
10
encephalopathy: A distinctive generalized developmental and epileptic encephalopathy.
Neurology. 2019 Jan 8;92(2):e96-e107. doi: 10.1212/WNL.0000000000006729. Epub 2018 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验