Suppr超能文献

利用化学计量平衡、热力学可行性和动力学规律形式化,在约束和基于机器学习的代谢建模方面的最新进展。

Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms.

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, USA.

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.

出版信息

Metab Eng. 2021 Jan;63:13-33. doi: 10.1016/j.ymben.2020.11.013. Epub 2020 Dec 10.

Abstract

Understanding the governing principles behind organisms' metabolism and growth underpins their effective deployment as bioproduction chassis. A central objective of metabolic modeling is predicting how metabolism and growth are affected by both external environmental factors and internal genotypic perturbations. The fundamental concepts of reaction stoichiometry, thermodynamics, and mass action kinetics have emerged as the foundational principles of many modeling frameworks designed to describe how and why organisms allocate resources towards both growth and bioproduction. This review focuses on the latest algorithmic advancements that have integrated these foundational principles into increasingly sophisticated quantitative frameworks.

摘要

理解生物体代谢和生长背后的控制原理是将其有效用作生物生产底盘的基础。代谢建模的一个中心目标是预测代谢和生长如何受到外部环境因素和内部基因型扰动的影响。反应计量学、热力学和质量作用动力学的基本概念已成为许多旨在描述生物体如何以及为何将资源分配到生长和生物生产的建模框架的基础原理。本综述重点介绍了将这些基础原理集成到越来越复杂的定量框架中的最新算法进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验