Suppr超能文献

在连续厌氧/好氧 A 段系统中实现生物 COD 和磷的同时去除。

Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system.

机构信息

GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain.

GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain.

出版信息

Water Res. 2021 Feb 15;190:116703. doi: 10.1016/j.watres.2020.116703. Epub 2020 Nov 30.

Abstract

Recovering energy from wastewater in addition to its treatment is a hot trend in the new concept of water resource recovery facility (WRRF). High-rate systems operating at low solid retention time (SRT) have been proposed to meet this challenge. In this paper, the integration of Enhanced Biological Phosphorus Removal (EBPR) in an anaerobic/aerobic continuous high-rate system (A-stage EBPR) was evaluated. Successful P and COD removal were obtained operating at SRT 6, 5 and 4 days treating real wastewater, while a further decrease to 3 days led to biomass washout. The best steady state operational conditions were obtained at SRT = 4d, with high removal percentage of P (94.5%) and COD (96.3%), and without detecting nitrification. COD mineralization could be reduced to 30%, while 64 % of the entering carbon could be diverted as biomass to energy recovery. Regarding nitrogen, about 69±1% of the influent N was left as ammonium in the effluent, with 30% used for biomass growth. The aerobic reactor could be operated at low dissolved oxygen (DO) (0.5 mg/L), which is beneficial to decrease energy requirements. Biochemical methane potential (BMP) tests showed better productivity for the anaerobic sludge than the aerobic sludge, with an optimal BMP of 296±2 mL CH/gVSS. FISH analysis at SRT = 4d revealed a high abundance of Accumulibacter (33±13%) and lower proportion of GAO: Competibacter (3.0±0.3%), Defluviicoccus I (0.6±0.1%) and Defluviicoccus II (4.3±1.1%).

摘要

从废水中回收能源是新型水资源回收设施 (WRRF) 的新概念,除了处理废水外,这也是一个热点趋势。为了应对这一挑战,提出了采用低固体停留时间 (SRT) 的高速系统。本文评估了在厌氧/好氧连续高速系统 (A 阶段 EBPR) 中整合增强型生物除磷 (EBPR)。在 SRT 为 6、5 和 4 天时,用实际废水处理时,成功获得了磷和 COD 的去除,而进一步降低到 3 天时,会导致生物量流失。在 SRT=4d 时,获得了最佳的稳定运行条件,磷的去除率高达 94.5%,COD 的去除率高达 96.3%,且没有检测到硝化作用。COD 矿化可减少到 30%,同时 64%的进入碳可作为生物质转化为能量回收。关于氮,大约 69±1%的进水 N 以铵的形式留在出水中,30%用于生物量的生长。好氧反应器可以在低溶解氧 (DO) (0.5 mg/L) 下运行,这有利于降低能源需求。生物化学甲烷潜能 (BMP) 测试表明,厌氧污泥的生产力优于好氧污泥,最佳 BMP 为 296±2 mL CH/gVSS。在 SRT=4d 时,荧光原位杂交 (FISH) 分析显示 Accumulibacter 的丰度较高 (33±13%),而 GAO:Competibacter (3.0±0.3%)、Defluviicoccus I (0.6±0.1%) 和 Defluviicoccus II (4.3±1.1%) 的比例较低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验