Suppr超能文献

开发定量离子特征-活性关系模型,以解决技术关键元素缺乏毒理学数据的问题。

Development of Quantitative Ion Character-Activity Relationship Models to Address the Lack of Toxicological Data for Technology-Critical Elements.

机构信息

Université de Pau et des Pays de l'Adour, e2s-UPPA, IPREM, Pau, France, and University of Geneva, DEFSE, Uni Carl Vogt, Geneva, Switzerland.

European Precious Metals Federation, Brussels, Belgium.

出版信息

Environ Toxicol Chem. 2021 Apr;40(4):1139-1148. doi: 10.1002/etc.4960. Epub 2021 Mar 10.

Abstract

Recent industrial developments have resulted in an increase in the use of so-called technology-critical elements (TCEs), for which the potential impacts on aquatic biota remain to be evaluated. In the present study, quantitative ion character-activity relationships (QICARs) have been developed to relate intrinsic metal properties to their toxicity toward freshwater aquatic organisms. In total, 23 metal properties were tested as predictors of acute median effect concentration (EC50) values for 12 data-rich metals, for algae, daphnids, and fish (with and without species distinction). Simple and multiple linear regressions were developed using the toxicological data expressed as a function of the total dissolved metal concentrations. The best regressions were then tested by comparing the predicted EC50 values for the TCEs (germanium, indium, gold, and rhenium) and platinum group elements (iridium, platinum, palladium, rhodium, and ruthenium) with the few measured values that are available. The 8 "best" QICAR models (adjusted r  > 0.6) used the covalent index as the predictor. For a given metal ion, this composite parameter is a measure of the importance of covalent interactions relative to ionic interactions. Toxicity was reasonably well predicted for most of the TCEs, with values falling within the 95% prediction intervals for the regressions of the measured versus predicted EC50 values. Exceptions included Au(I) (all test organisms), Au(III) (algae and fish), Pt(II) (algae, daphnids), Ru(III) (daphnids), and Rh(III) (daphnids, fish). We conclude that QICARs show potential as a screening tool to review toxicity data and flag "outliers," which might need further scrutiny, and as an interpolating or extrapolating tool to predict TCE toxicity. Environ Toxicol Chem 2021;40:1139-1148. © 2020 SETAC.

摘要

最近的工业发展导致了所谓的对技术关键元素(TCEs)的使用增加,其对水生生物群的潜在影响仍有待评估。在本研究中,定量离子特性-活性关系(QICARs)已被开发用于将金属固有特性与其对淡水水生生物的毒性相关联。总共测试了 23 种金属特性作为 12 种数据丰富金属的急性中值效应浓度(EC50)值的预测因子,这些金属用于藻类、水蚤和鱼类(有和没有物种区分)。使用总溶解金属浓度作为函数的毒理学数据开发了简单和多元线性回归。然后,通过将 TCE(锗、铟、金和铼)和铂族元素(铱、铂、钯、铑和钌)的预测 EC50 值与可用的少数实测值进行比较,来测试最佳回归。8 个“最佳”QICAR 模型(调整后的 r>0.6)使用共价指数作为预测因子。对于给定的金属离子,该组合参数是衡量共价相互作用相对于离子相互作用的重要性的指标。对于大多数 TCE,毒性得到了很好的预测,回归的实测与预测 EC50 值的 95%预测区间内包含了这些值。例外情况包括 Au(I)(所有测试生物)、Au(III)(藻类和鱼类)、Pt(II)(藻类、水蚤)、Ru(III)(水蚤)和 Rh(III)(水蚤、鱼类)。我们得出结论,QICAR 具有作为审查毒性数据和标记“异常值”的筛选工具的潜力,这些异常值可能需要进一步审查,并且作为插值或外推工具来预测 TCE 毒性。Environ Toxicol Chem 2021;40:1139-1148。 © 2020 SETAC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验