Suppr超能文献

用于构造立体几何的神经形状解析器。

Neural Shape Parsers for Constructive Solid Geometry.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2628-2640. doi: 10.1109/TPAMI.2020.3044749. Epub 2022 Apr 1.

Abstract

Constructive solid geometry (CSG) is a geometric modeling technique that defines complex shapes by recursively applying boolean operations on primitives such as spheres and cylinders. We present CSGNet, a deep network architecture that takes as input a 2D or 3D shape and outputs a CSG program that models it. Parsing shapes into CSG programs is desirable as it yields a compact and interpretable generative model. However, the task is challenging since the space of primitives and their combinations can be prohibitively large. CSGNet uses a convolutional encoder and recurrent decoder based on deep networks to map shapes to modeling instructions in a feed-forward manner and is significantly faster than bottom-up approaches. We investigate two architectures for this task-a vanilla encoder (CNN) - decoder (RNN) and another architecture that augments the encoder with an explicit memory module based on the program execution stack. The stack augmentation improves the reconstruction quality of the generated shape and learning efficiency. Our approach is also more effective as a shape primitive detector compared to a state-of-the-art object detector. Finally, we demonstrate CSGNet can be trained on novel datasets without program annotations through policy gradient techniques.

摘要

构造实体几何(CSG)是一种几何建模技术,它通过对球体和圆柱体等基元递归应用布尔操作来定义复杂形状。我们提出了 CSGNet,这是一种深度网络架构,它接受 2D 或 3D 形状作为输入,并输出建模它的 CSG 程序。将形状解析为 CSG 程序是可取的,因为它生成了一个紧凑且可解释的生成模型。然而,由于基元及其组合的空间可能大得令人望而却步,因此该任务具有挑战性。CSGNet 使用基于深度网络的卷积编码器和递归解码器以正向方式将形状映射到建模指令,并且比自下而上的方法快得多。我们研究了两种用于此任务的架构——一种是基于卷积神经网络(CNN)的编码器-解码器(RNN),另一种架构则在编码器中增加了基于程序执行堆栈的显式记忆模块。堆栈增强提高了生成形状的重建质量和学习效率。与最先进的对象检测器相比,我们的方法作为形状基元检测器也更有效。最后,我们证明 CSGNet 可以通过策略梯度技术在没有程序注释的新数据集上进行训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验