Suppr超能文献

用于点云分割和几何基元拟合的分层神经网络。

A Hierarchical Neural Network for Point Cloud Segmentation and Geometric Primitive Fitting.

作者信息

Wan Honghui, Zhao Feiyu

机构信息

College of Computer Science, South-Central Minzu University, No. 182 Minzu Avenue, Hongshan District, Wuhan 430074, China.

Key Laboratory of Cyber-Physical Fusion Intelligent Computing (South-Central Minzu University), State Ethnic Affairs Commission, No. 182 Minzu Avenue, Hongshan District, Wuhan 430074, China.

出版信息

Entropy (Basel). 2024 Aug 23;26(9):717. doi: 10.3390/e26090717.

Abstract

Automated generation of geometric models from point cloud data holds significant importance in the field of computer vision and has expansive applications, such as shape modeling and object recognition. However, prevalent methods exhibit accuracy issues. In this study, we introduce a novel hierarchical neural network that utilizes recursive PointConv operations on nested subdivisions of point sets. This network effectively extracts features, segments point clouds, and accurately identifies and computes parameters of regular geometric primitives with notable resilience to noise. On fine-grained primitive detection, our approach outperforms Supervised Primitive Fitting Network (SPFN) by 18.5% and Cascaded Primitive Fitting Network (CPFN) by 11.2%. Additionally, our approach consistently maintains low absolute errors in parameter prediction across varying noise levels in the point cloud data. Our experiments validate the robustness of our proposed method and establish its superiority relative to other methodologies in the extant literature.

摘要

从点云数据自动生成几何模型在计算机视觉领域具有重要意义,并且有广泛的应用,如形状建模和目标识别。然而,普遍的方法存在准确性问题。在本研究中,我们引入了一种新颖的分层神经网络,该网络在点集的嵌套细分上利用递归点卷积操作。该网络有效地提取特征、分割点云,并准确识别和计算规则几何基元的参数,对噪声具有显著的鲁棒性。在细粒度基元检测方面,我们的方法在性能上比监督基元拟合网络(SPFN)高出18.5%,比级联基元拟合网络(CPFN)高出11.2%。此外,在点云数据中不同噪声水平下,我们的方法在参数预测中始终保持较低的绝对误差。我们的实验验证了所提方法的稳健性,并确立了其相对于现有文献中其他方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af89/11430959/5114d2bacb22/entropy-26-00717-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验