Suppr超能文献

深度正电子发射断层扫描(DeepPET):一种用于直接解决正电子发射断层扫描图像重建逆问题的深度编解码器网络。

DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.

作者信息

Häggström Ida, Schmidtlein C Ross, Campanella Gabriele, Fuchs Thomas J

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

出版信息

Med Image Anal. 2019 May;54:253-262. doi: 10.1016/j.media.2019.03.013. Epub 2019 Mar 30.

Abstract

The purpose of this research was to implement a deep learning network to overcome two of the major bottlenecks in improved image reconstruction for clinical positron emission tomography (PET). These are the lack of an automated means for the optimization of advanced image reconstruction algorithms, and the computational expense associated with these state-of-the art methods. We thus present a novel end-to-end PET image reconstruction technique, called DeepPET, based on a deep convolutional encoder-decoder network, which takes PET sinogram data as input and directly and quickly outputs high quality, quantitative PET images. Using simulated data derived from a whole-body digital phantom, we randomly sampled the configurable parameters to generate realistic images, which were each augmented to a total of more than 291,000 reference images. Realistic PET acquisitions of these images were simulated, resulting in noisy sinogram data, used for training, validation, and testing the DeepPET network. We demonstrated that DeepPET generates higher quality images compared to conventional techniques, in terms of relative root mean squared error (11%/53% lower than ordered subset expectation maximization (OSEM)/filtered back-projection (FBP), structural similarity index (1%/11% higher than OSEM/FBP), and peak signal-to-noise ratio (1.1/3.8 dB higher than OSEM/FBP). In addition, we show that DeepPET reconstructs images 108 and 3 times faster than OSEM and FBP, respectively. Finally, DeepPET was successfully applied to real clinical data. This study shows that an end-to-end encoder-decoder network can produce high quality PET images at a fraction of the time compared to conventional methods.

摘要

本研究的目的是实现一个深度学习网络,以克服临床正电子发射断层扫描(PET)改进图像重建中的两个主要瓶颈。这两个瓶颈分别是缺乏用于优化先进图像重建算法的自动化手段,以及与这些先进方法相关的计算成本。因此,我们提出了一种基于深度卷积编码器 - 解码器网络的新型端到端PET图像重建技术,称为DeepPET,它以PET正弦图数据作为输入,直接快速输出高质量的定量PET图像。我们使用从全身数字体模导出的模拟数据,随机采样可配置参数以生成逼真的图像,每个图像都被增强到总共超过291,000个参考图像。对这些图像进行了逼真的PET采集模拟,生成有噪声的正弦图数据,用于训练、验证和测试DeepPET网络。我们证明,与传统技术相比,DeepPET生成的图像质量更高,相对均方根误差(比有序子集期望最大化(OSEM)/滤波反投影(FBP)低11%/53%)、结构相似性指数(比OSEM/FBP高1%/11%)和峰值信噪比(比OSEM/FBP高1.1/3.8 dB)。此外,我们表明DeepPET重建图像的速度分别比OSEM和FBP快108倍和3倍。最后,DeepPET成功应用于真实临床数据。这项研究表明,与传统方法相比,端到端编码器 - 解码器网络可以在更短的时间内生成高质量的PET图像。

相似文献

1
DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.
Med Image Anal. 2019 May;54:253-262. doi: 10.1016/j.media.2019.03.013. Epub 2019 Mar 30.
2
An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET.
Eur J Nucl Med Mol Imaging. 2022 Nov;49(13):4464-4477. doi: 10.1007/s00259-022-05861-2. Epub 2022 Jul 11.
3
GapFill-Recon Net: A Cascade Network for simultaneously PET Gap Filling and Image Reconstruction.
Comput Methods Programs Biomed. 2021 Sep;208:106271. doi: 10.1016/j.cmpb.2021.106271. Epub 2021 Jul 7.
6
Modular GAN: positron emission tomography image reconstruction using two generative adversarial networks.
Front Radiol. 2024 Aug 29;4:1466498. doi: 10.3389/fradi.2024.1466498. eCollection 2024.
8
Image reconstruction using UNET-transformer network for fast and low-dose PET scans.
Comput Med Imaging Graph. 2023 Dec;110:102315. doi: 10.1016/j.compmedimag.2023.102315. Epub 2023 Nov 23.
10
A deep neural network for parametric image reconstruction on a large axial field-of-view PET.
Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):701-714. doi: 10.1007/s00259-022-06003-4. Epub 2022 Nov 3.

引用本文的文献

2
Optimizing Attenuation Correction in Ga-PSMA PET Imaging Using Deep Learning and Artifact-Free Dataset Refinement.
Diagnostics (Basel). 2025 May 31;15(11):1400. doi: 10.3390/diagnostics15111400.
3
Likelihood-Scheduled Score-Based Generative Modeling for Fully 3D PET Image Reconstruction.
IEEE Trans Med Imaging. 2025 Jun 4;PP:1. doi: 10.1109/TMI.2025.3576483.
4
Towards real-time diffuse optical tomography with a handheld scanning probe.
Biomed Opt Express. 2025 Mar 26;16(4):1582-1601. doi: 10.1364/BOE.549880. eCollection 2025 Apr 1.
7
SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging.
Front Nucl Med. 2024 Nov 19;4:1469490. doi: 10.3389/fnume.2024.1469490. eCollection 2024.
8
Monte Carlo methods for medical imaging research.
Biomed Eng Lett. 2024 Sep 5;14(6):1195-1205. doi: 10.1007/s13534-024-00423-x. eCollection 2024 Nov.
9
Probabilistic deconvolution of PET images using informed priors.
Front Nucl Med. 2023 Jan 12;2:1028928. doi: 10.3389/fnume.2022.1028928. eCollection 2022.

本文引用的文献

1
Iterative PET Image Reconstruction Using Convolutional Neural Network Representation.
IEEE Trans Med Imaging. 2019 Mar;38(3):675-685. doi: 10.1109/TMI.2018.2869871. Epub 2018 Sep 12.
2
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
3
Statistical Iterative CBCT Reconstruction Based on Neural Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1511-1521. doi: 10.1109/TMI.2018.2829896.
4
CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1440-1453. doi: 10.1109/TMI.2018.2832656.
5
Intelligent Parameter Tuning in Optimization-Based Iterative CT Reconstruction via Deep Reinforcement Learning.
IEEE Trans Med Imaging. 2018 Jun;37(6):1430-1439. doi: 10.1109/TMI.2018.2823679.
6
A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution.
IEEE Trans Med Imaging. 2018 Jun;37(6):1407-1417. doi: 10.1109/TMI.2018.2823338.
7
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
8
LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT.
IEEE Trans Med Imaging. 2018 Jun;37(6):1333-1347. doi: 10.1109/TMI.2018.2805692.
9
Learned Primal-Dual Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
10
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验